@inproceedings{fb472e5f61f14f669581953670b7c5ae,
title = "Assessment of mental workload: A comparison of machine learning methods and subjective assessment techniques",
abstract = "Mental workload (MWL) measurement is a complex multidisciplinary research field. In the last 50 years of research endeavour, MWL measurement has mainly produced theory-driven models. Some of the reasons for justifying this trend includes the omnipresent uncertainty about how to define the construct of MWL and the limited use of datadriven research methodologies. This work presents novel research focused on the investigation of the capability of a selection of supervised Machine Learning (ML) classification techniques to produce data-driven computational models of MWL for the prediction of objective performance. These are then compared to two state-of-the-art subjective techniques for the assessment of MWL, namely the NASA Task Load Index and the Workload Profile, through an analysis of their concurrent and convergent validity. Findings show that the data-driven models generally tend to outperform the two baseline selected techniques.",
author = "Karim Moustafa and Saturnino Luz and Luca Longo",
year = "2017",
month = jun,
day = "4",
doi = "10.1007/978-3-319-61061-0_3",
language = "English",
isbn = "9783319610603",
volume = "726",
series = "Communications in Computer and Information Science",
publisher = "Springer",
pages = "30--50",
booktitle = "Human Mental Workload : Models and Applications - 1st International Symposium, H-WORKLOAD 2017, Revised Selected Papers",
address = "United Kingdom",
note = "1st International Symposium on Human Mental Workload: Models and Applications, H-WORKLOAD 2017 ; Conference date: 28-06-2017 Through 30-06-2017",
}