Astrophysical Implications of the Binary Black-Hole Merger GW150914

The LIGO Scientific Collaboration, the Virgo Collaboration, Jonathan Gair

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes ($\gtrsim 25\, M_\odot$) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than $\sim 1/2$ of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions ($\gtrsim 1 \, \mathrm{Gpc}^{-3} \, \mathrm{yr}^{-1}$) from both types of formation models. The low measured redshift ($z \sim 0.1$) of GW150914 and the low inferred metallicity of the stellar progenitor imply either binary black-hole formation in a low-mass galaxy in the local Universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-black-hole formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and gravitational-wave detectors in space.
Original languageEnglish
Number of pages15
JournalAstrophysical Journal Letters
Volume818
Issue number2
DOIs
Publication statusPublished - 11 Feb 2016

Keywords / Materials (for Non-textual outputs)

  • astro-ph.HE
  • gr-qc

Fingerprint

Dive into the research topics of 'Astrophysical Implications of the Binary Black-Hole Merger GW150914'. Together they form a unique fingerprint.

Cite this