Abstract
ASVspoof, now in its third edition, is a series of community-led challenges which promote the development
of countermeasures to protect automatic speaker verification (ASV) from the threat of spoofing. Advances in the 2019 edition include: (i) a consideration of both logical access (LA) and physical access (PA) scenarios and the three major forms of spoofing attack, namely synthetic, converted and replayed speech; (ii) spoofing attacks generated with state-of-the-art neural acoustic and waveform models; (iii) an improved, controlled simulation of replay attacks; (iv) use of the tandem detection cost function (t-DCF) that reflects the impact of both spoofing and countermeasures upon ASV reliability. Even if ASV remains the core focus, in retaining the equal error rate (EER) as a secondary metric, ASVspoof also embraces the growing importance of fake audio detection. ASVspoof 2019 attracted the participation of 63 research teams, with more than half of these reporting systems that improve upon the performance of two baseline spoofing countermeasures. This paper describes the 2019 database, protocols and challenge results. It also outlines major findings which demonstrate the real progress made in protecting against the threat of spoofing and fake audio.
of countermeasures to protect automatic speaker verification (ASV) from the threat of spoofing. Advances in the 2019 edition include: (i) a consideration of both logical access (LA) and physical access (PA) scenarios and the three major forms of spoofing attack, namely synthetic, converted and replayed speech; (ii) spoofing attacks generated with state-of-the-art neural acoustic and waveform models; (iii) an improved, controlled simulation of replay attacks; (iv) use of the tandem detection cost function (t-DCF) that reflects the impact of both spoofing and countermeasures upon ASV reliability. Even if ASV remains the core focus, in retaining the equal error rate (EER) as a secondary metric, ASVspoof also embraces the growing importance of fake audio detection. ASVspoof 2019 attracted the participation of 63 research teams, with more than half of these reporting systems that improve upon the performance of two baseline spoofing countermeasures. This paper describes the 2019 database, protocols and challenge results. It also outlines major findings which demonstrate the real progress made in protecting against the threat of spoofing and fake audio.
Original language | English |
---|---|
Title of host publication | Proceedings Interspeech 2019 |
Publisher | International Speech Communication Association |
Pages | 1008-1012 |
Number of pages | 5 |
DOIs | |
Publication status | Published - 19 Sept 2019 |
Event | Interspeech 2019 - Graz, Austria Duration: 15 Sept 2019 → 19 Sept 2019 https://www.interspeech2019.org/ |
Publication series
Name | |
---|---|
Publisher | International Speech Communication Association |
ISSN (Electronic) | 1990-9772 |
Conference
Conference | Interspeech 2019 |
---|---|
Country/Territory | Austria |
City | Graz |
Period | 15/09/19 → 19/09/19 |
Internet address |
Keywords / Materials (for Non-textual outputs)
- spoofing
- automatic speaker verification
- ASVspoof
- presentation attack detection
- fake audio
Fingerprint
Dive into the research topics of 'ASVspoof 2019: Future Horizons in Spoofed and Fake Audio Detection'. Together they form a unique fingerprint.Datasets
-
ASVspoof 2019: The 3rd Automatic Speaker Verification Spoofing and Countermeasures Challenge database
Yamagishi, J. (Creator), Todisco, M. (Creator), Sahidullah, M. (Creator), Delgado, H. (Creator), Wang, X. (Creator), Evans, N. (Creator), Kinnunen, T. (Creator), Lee, K. A. (Creator), Vestman, V. (Creator) & Nautsch, A. (Creator), Edinburgh DataShare, 4 Jun 2019
DOI: 10.7488/ds/2555
Dataset