TY - JOUR
T1 - Automated imaging, identification, and counting of similar cells from digital hologram reconstructions
AU - Mihailescu, Mona
AU - Scarlat, Mihaela
AU - Gheorghiu, Alexandru
AU - Costescu, Julia
AU - Kusko, Mihai
AU - Alexandra Paun, Irina
AU - Scarlat, Eugen
PY - 2011
Y1 - 2011
N2 - This paper presents our method, which simultaneously combines automatic imaging, identification, and counting with the acquisition of morphological information for at least 1000 blood cells from several three-dimensional images of the same sample. We started with seeking parameters to differentiate between red blood cells that are similar but different with respect to their development stage, i.e., mature or immature. We highlight that these cells have different diffractive patterns with complementary central intensity distribution in a given plane along the propagation axis. We use the Fresnel approximation to simulate propagation through cells modeled as spheroid-shaped phase objects and to find the cell property that has the dominant influence on this behavior. Starting with images obtained in the reconstruction step of the digital holographic microscopy technique, we developed a code for automated simultaneous individual cell image separation, identification, and counting, even when the cells are partially overlapped on a slide, and accurate measuring of their morphological features. To find the centroids of each cell, we propose a method based on analytical functions applied at threshold intervals. Our procedure separates the mature from the immature red blood cells and from the white blood cells through a decision based on gradient and radius values.
AB - This paper presents our method, which simultaneously combines automatic imaging, identification, and counting with the acquisition of morphological information for at least 1000 blood cells from several three-dimensional images of the same sample. We started with seeking parameters to differentiate between red blood cells that are similar but different with respect to their development stage, i.e., mature or immature. We highlight that these cells have different diffractive patterns with complementary central intensity distribution in a given plane along the propagation axis. We use the Fresnel approximation to simulate propagation through cells modeled as spheroid-shaped phase objects and to find the cell property that has the dominant influence on this behavior. Starting with images obtained in the reconstruction step of the digital holographic microscopy technique, we developed a code for automated simultaneous individual cell image separation, identification, and counting, even when the cells are partially overlapped on a slide, and accurate measuring of their morphological features. To find the centroids of each cell, we propose a method based on analytical functions applied at threshold intervals. Our procedure separates the mature from the immature red blood cells and from the white blood cells through a decision based on gradient and radius values.
U2 - 10.1364/AO.50.003589
DO - 10.1364/AO.50.003589
M3 - Article
SN - 1559-128X
VL - 50
SP - 3589
EP - 3597
JO - Applied optics
JF - Applied optics
IS - 20
ER -