Abstract / Description of output
Minimisation of discrete energies defined over factors is an important problem in computer vision, and a vast number of MAP inference algorithms have been proposed. Different inference algorithms perform better on factor graph models (GMs) from different underlying problem classes, and in general it is difficult to know which algorithm will yield the lowest energy for a given GM. To mitigate this difficulty, survey papers [1–3] advise the practitioner on what algorithms perform well on what classes of models. We take the next step forward, and present a technique to automatically select the best inference algorithm for an input GM. We validate our method experimentally on an extended version of the OpenGM2 benchmark [3], containing a diverse set of vision problems. On average, our method selects an inference algorithm yielding labellings with 96 % of variables the same as the best available algorithm.
Original language | English |
---|---|
Title of host publication | Computer Vision -- ECCV 2016 |
Subtitle of host publication | 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V |
Editors | Bastian Leibe, Jiri Matas, Nicu Sebe, Max Welling |
Place of Publication | Cham |
Publisher | Springer |
Pages | 235-252 |
Number of pages | 18 |
ISBN (Electronic) | 978-3-319-46454-1 |
ISBN (Print) | 978-3-319-46453-4 |
DOIs | |
Publication status | Published - 16 Sept 2016 |
Event | 14th European Conference on Computer Vision 2016 - Amsterdam, Netherlands Duration: 8 Oct 2016 → 16 Oct 2016 http://www.eccv2016.org/ |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Publisher | Springer International Publishing |
Volume | 9909 |
ISSN (Print) | 0302-9743 |
Conference
Conference | 14th European Conference on Computer Vision 2016 |
---|---|
Abbreviated title | ECCV 2016 |
Country/Territory | Netherlands |
City | Amsterdam |
Period | 8/10/16 → 16/10/16 |
Internet address |