TY - JOUR
T1 - Axioms for the category of Hilbert spaces and linear contractions
AU - Heunen, Chris
AU - Kornell, Andre
AU - Van Der Schaaf, Nesta
N1 - Funding Information:
We thank Matthew Di Meglio and Martti Karvonen for careful reading and suggestions. Andre Kornell was supported by the Air Force Office of Scientific Research under Awards No. FA9550‐16‐1‐0082 and FA9550‐21‐1‐0041.
Publisher Copyright:
© 2024 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society.
PY - 2024/4/2
Y1 - 2024/4/2
N2 - The category of Hilbert spaces and linear contractions is characterised by elementary categorical properties that do not refer to probabilities, complex numbers, norm, continuity, convexity, or dimension.
AB - The category of Hilbert spaces and linear contractions is characterised by elementary categorical properties that do not refer to probabilities, complex numbers, norm, continuity, convexity, or dimension.
UR - https://www.scopus.com/pages/publications/85183308301
U2 - 10.1112/blms.13010
DO - 10.1112/blms.13010
M3 - Article
SN - 0024-6093
VL - 56
SP - 1532
EP - 1549
JO - Bulletin of the london mathematical society
JF - Bulletin of the london mathematical society
IS - 4
ER -