## Abstract / Description of output

The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z <1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k <10 h Mpc(-1) and better than 5 per cent for 10 <k <100 h Mpc(-1). Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in addition to the expected constraints on the total neutrino mass.

Original language | English |
---|---|

Pages (from-to) | 1212-1223 |

Number of pages | 12 |

Journal | Monthly Notices of the Royal Astronomical Society |

Volume | 450 |

Issue number | 2 |

DOIs | |

Publication status | Published - 21 Jun 2015 |

## Keywords / Materials (for Non-textual outputs)

- gravitational lensing: weak
- neutrinos
- galaxies: formation
- cosmological parameters
- dark matter
- MATTER POWER SPECTRUM
- COSMIC SHEAR
- GALAXY FORMATION
- 2-POINT STATISTICS
- COYOTE UNIVERSE
- CFHTLENS
- IMPACT
- MODEL
- COVARIANCES
- CONSTRAINTS