BERT-ER: Query-specific BERT Entity Representations for Entity Ranking

Shubham Chatterjee, Laura Dietz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract / Description of output

Entity-oriented search systems often learn vector representations of entities via the introductory paragraph from the Wikipedia page of the entity. As such representations are the same for every query, our hypothesis is that the representations are not ideal for IR tasks. In this work, we present BERT Entity Representations (BERT-ER) which are query-specific vector representations of entities obtained from text that describes how an entity is relevant for a query. Using BERT-ER in a downstream entity ranking system, we achieve a performance improvement of 13-42% (Mean Average Precision) over a system that uses the BERT embedding of the introductory paragraph from Wikipedia on two large-scale test collections. Our approach also outperforms entity ranking systems using entity embeddings from Wikipedia2Vec, ERNIE, and E-BERT. We show that our entity ranking system using BERT-ER can increase precision at the top of the ranking by promoting relevant entities to the top. With this work, we release our BERT models and query-specific entity embeddings fine-tuned for the entity ranking task.

Original languageEnglish
Title of host publicationSIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages1466-1477
Number of pages12
ISBN (Electronic)9781450387323
DOIs
Publication statusPublished - 6 Jul 2022
Event45th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022 - Madrid, Spain
Duration: 11 Jul 202215 Jul 2022

Conference

Conference45th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022
Country/TerritorySpain
CityMadrid
Period11/07/2215/07/22

Keywords / Materials (for Non-textual outputs)

  • bert
  • entity ranking
  • query-specific entity representations

Fingerprint

Dive into the research topics of 'BERT-ER: Query-specific BERT Entity Representations for Entity Ranking'. Together they form a unique fingerprint.

Cite this