Abstract
We introduce a task consisting in matching a proof to a given mathematical statement. The task fits well within current research on Mathematical Information Retrieval and, more generally, mathematical article analysis (Mathematical Sciences, 2014). We present a dataset for the task (the MATcH dataset) consisting of over 180k statement-proof pairs extracted from modern mathematical research articles. We find this dataset highly representative of our task, as it consists of relatively new findings useful to mathematicians. We propose a bilinear similarity model and two decoding methods to match statements to proofs effectively. While the first decoding method matches a proof to a statement without being aware of other statements or proofs, the second method treats the task as a global matching problem. Through a symbol replacement procedure, we analyze the "insights" that pre-trained language models have in such mathematical article analysis and show that while these models perform well on this task with the best performing mean reciprocal rank of 73.7, they follow a relatively shallow symbolic analysis and matching to achieve that performance.
Original language | English |
---|---|
Title of host publication | Proceedings of the Conference of the 17th European Chapter of the Association for Computational Linguistics 2023 |
Number of pages | 13 |
Publication status | Accepted/In press - 20 Jan 2023 |
Event | The 17th Conference of the European Chapter of the Association for Computational Linguistics, 2023 - Dubrovnik, Croatia Duration: 2 May 2023 → 6 May 2023 Conference number: 17 https://2023.eacl.org/ |
Conference
Conference | The 17th Conference of the European Chapter of the Association for Computational Linguistics, 2023 |
---|---|
Abbreviated title | EACL 2023 |
Country/Territory | Croatia |
City | Dubrovnik |
Period | 2/05/23 → 6/05/23 |
Internet address |