Biopolymer dynamics driven by helical flagella

Andrew K. Balin, Andreas Zottl, Julia M. Yeomans, Tyler N. Shendruk

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Microbial flagellates typically inhabit complex suspensions of polymeric material which can impact the swimming speed of motile microbes, filter feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena, in particular, the hydrodynamic and steric influence of a rotating helical filament on suspended polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix pumps fluid along its long axis, polymers migrate radially inward while being elongated. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. This accumulation of polymers within the vicinity of the helix is stronger for longer polymers. We further analyze the stochastic work performed by the helix on the polymers and show that this quantity is positive on average and increases with polymer contour length.
Original languageEnglish
Article number113102
JournalPhysical Review Fluids
Volume2
Issue number11
DOIs
Publication statusPublished - 16 Nov 2017

Fingerprint

Dive into the research topics of 'Biopolymer dynamics driven by helical flagella'. Together they form a unique fingerprint.

Cite this