Bone's early responses to mechanical loading differ in distinct genetic strains of chick: Selection for enhanced growth reduces skeletal adaptability

A A Pitsillides, S C F Rawlinson, J R Mosley, L E Lanyon

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Bone's functional competence is established and maintained, at least partly, by mechanisms involving appropriate adaptation to mechanical loading. These appear to fail in chickens selectively bred either for maximum egg (Egg-type) or meat (Meat-type) production, which show high rates of fracture and skeletal abnormality, respectively. By measuring several early strain-induced responses in cultured embryonic tibiotarsi from commercially bred (Egg-type and Meat-type) and wild-type (Wild-type) chicks, we have investigated the possibility that these skeletal failures are the product of a compromised ability to respond appropriately to loading-induced mechanical strain. Axial loads engendering peak dynamic (1 Hz) longitudinal strains of between -1300 mu epsilon and -1500 mu epsilon (for 10 minutes) in vitro in tibiotarsi from the three types of 18-day-old chicks increased periosteal osteoblast glucose 6-phosphate dehydrogenase (G6PD) activity in both Wild-type (26%, p < 0.01) and Egg-type (49%, p < 0.001) chicks in situ, while Meat-type chicks did not show any significant changes (11%). Load-induced increases in medium nitrite accumulation (stable nitric oxide [NO] metabolite) were produced in Egg-type and Wild-type tibiotarsi (82 +/- 12%, p < 0.01; 39 +/- 8%, p < 0.01), respectively. In contrast, loading, produced no change in NO release from Meat-type chick tibiotarsi. These changes in NO release correlated with load-related increases in G6PD activity (R-2 = 0.98, p < 0.05) in the different chick types. Wild-type and Meat-type tibiotarsal periosteal osteoblasts responded in a biphasic manner to exogenous prostacyclin (PGI(2)), with maximal stimulation of G6PD activity at 10(-7) M and 10(-6) M PGI(2). However, Egg-type chick osteoblasts showed smaller, progressive increases up to 10(-5) M PGI(2). These results indicate that early phases of the adaptive response to loading differ in different genetic strains of embryonic chick; that skeletal abnormalities which develop in genetically selected, high growth rate chicks may reflect a compromised ability to respond to load; and that load-induced increases in osteoblastic G6PD. activity appear to be closely associated with increased rates of NO release. It is probable that similar genetically related differences in bones' responsiveness to mechanical loading occur in other species.

Original languageEnglish
Pages (from-to)980-987
Number of pages8
JournalJournal of Bone and Mineral Research
Issue number6
Publication statusPublished - Jun 1999

Keywords / Materials (for Non-textual outputs)

  • NO


Dive into the research topics of 'Bone's early responses to mechanical loading differ in distinct genetic strains of chick: Selection for enhanced growth reduces skeletal adaptability'. Together they form a unique fingerprint.

Cite this