Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid–rock interaction in white mica (Lago di Cignana, Western Alps)

Ralf Halama, Matthias Konrad-schmolke, Jan C. M. De Hoog

Research output: Contribution to journalArticlepeer-review

Abstract

This study presents boron (B) concentration and isotope data for white mica from (ultra)high-pressure (UHP), subduction-related metamorphic rocks from Lago di Cignana (Western Alps, Italy). These rocks are of specific geological interest, because they comprise the most deeply subducted rocks of oceanic origin worldwide. Boron geochemistry can track fluid–rock interaction during their metamorphic evolution and provide important insights into mass transfer processes in subduction zones. The highest B contents (up to 345 μg/g B) occur in peak metamorphic phengite from a garnet–phengite quartzite. The B isotopic composition is variable (δ11B = − 10.3 to − 3.6%) and correlates positively with B concentrations. Based on similar textures and major element mica composition, neither textural differences, prograde growth zoning, diffusion nor a retrograde overprint can explain this correlation. Modelling shows that B devolatilization during metamorphism can explain the general trend, but fails to account for the wide compositional and isotopic variability in a single, well-equilibrated sample. We, therefore, argue that this trend represents fluid–rock interaction during peak metamorphic conditions. This interpretation is supported by fluid–rock interaction modelling of boron leaching and boron addition that can successfully reproduce the observed spread in δ11B and [B]. Taking into account the local availability of serpentinites as potential source rocks of the fluids, the temperatures reached during peak metamorphism that allow for serpentine dehydration, and the high positive δ11B values (δ11B = 20 ± 5) modelled for the fluids, an influx of serpentinite-derived fluid appears likely. Paragonite in lawsonite pseudomorphs in an eclogite and phengite from a retrogressed metabasite have B contents between 12 and 68 μg/g and δ11B values that cluster around 0% (δ11B = − 5.0 to + 3.5). White mica in both samples is related to distinct stages of retrograde metamorphism during exhumation of the rocks. The variable B geochemistry can be successfully modelled as fluid–rock interaction with low-to-moderate (< 3) fluid/rock ratios, where mica equilibrates with a fluid into which B preferentially partitions, causing leaching of B from the rock. The metamorphic rocks from Lago di Cignana show variable retention of B in white mica during subduction-related metamorphism and exhumation. The variability in the B geochemical signature in white mica is significant and enhances our understanding of metamorphic processes and their role in element transfer in subduction zones.
Original languageEnglish
JournalContributions to Mineralogy and Petrology
Volume175
Issue number3
Early online date6 Feb 2020
DOIs
Publication statusPublished - 1 Mar 2020

Fingerprint Dive into the research topics of 'Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid–rock interaction in white mica (Lago di Cignana, Western Alps)'. Together they form a unique fingerprint.

Cite this