Brain matters: Unveiling the Distinct Contributions of Region, Age, and Sex to Glia diversity and CNS Function

Luise Seeker, Nadine Bestard-Cuche, Nina-Lydia Kazakou, Sunniva Bøstrand, Laura Wagstaff, Justyna Cholewa-Waclaw, Alastair Kilpatrick, David van Bruggen, Mukund Kabbe, Fabio Baldivia Pohl, Zahra Moslehi, Neil C Henderson, Catalina A Vallejos, Gioele La Manno, Gonçalo Castelo-Branco, Anna C Williams

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia. Using single nucleus RNA sequencing of human post-mortem white matter samples from the brain, cerebellum and spinal cord and subsequent tissue-based validation we found substantial glial heterogeneity with tissue region: we identified region-specific oligodendrocyte precursor cells (OPCs) that retain developmental origin markers into adulthood, distinguishing them from mouse OPCs. Region-specific OPCs give rise to similar oligodendrocyte populations, however spinal cord oligodendrocytes exhibit
markers such as SKAP2 which are associated with increased myelin production and we found a spinal cord selective population particularly equipped for producing long and thick myelin sheaths based on the expression of genes/proteins such as HCN2. Spinal cord microglia exhibit a more activated phenotype compared to brain microglia, suggesting that the spinal cord is a more pro-inflammatory environment, a difference that intensifies with age. Astrocyte gene expression correlates strongly with CNS region, however, astrocytes do not show a more activated state with region or age.
Across all glia, sex differences are subtle but the consistent increased expression of protein-folding genes in male donors hints at pathways that may contribute to sex differences in disease susceptibility. These findings are essential to consider for understanding selective CNS pathologies and developing tailored therapeutic strategies.
Original languageEnglish
JournalActa Neuropathologica Communications
Publication statusPublished - 22 May 2023


Dive into the research topics of 'Brain matters: Unveiling the Distinct Contributions of Region, Age, and Sex to Glia diversity and CNS Function'. Together they form a unique fingerprint.

Cite this