TY - JOUR
T1 - Can nitrogen input mapping from aerial imagery improve nitrous oxide emissions estimates from grazed grassland?
AU - Maire, Juliette
AU - Gibson-poole, Simon
AU - Cowan, Nicholas
AU - Krol, Dominika
AU - Somers, Cathal
AU - Reay, Dave S.
AU - Skiba, Ute
AU - Rees, Robert M.
AU - Lanigan, Gary J.
AU - Richards, Karl G.
N1 - Funding for this work was supported by the Walsh fellowship program at Teagasc, Ireland (Fellowship Number 2014079) and under the project Manipulation and Integration of Nitrogen Emissions (MINE). This research was also financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant Number 15S655).
PY - 2022/6/21
Y1 - 2022/6/21
N2 - Most nitrogen (N) lost to the environment from grazed grassland is produced as a result of N excreted by livestock, released in the form of nitrous oxide (N2O) emissions, nitrate leaching and ammonia volatilisation. In addition to the N fertiliser applied, excreta deposited by grazing livestock constitute a heterogeneous excess of N, creating spatial hotspots of N losses. This study presents a yearlong N2O emissions map from a typical intensively managed temperate grassland, grazed periodically by a dairy herd. The excreta deposition mapping was undertaken using high-resolution RGB images captured with a remotely piloted aircraft system combined with N2O emissions measurements using closed statics chambers. The annual N2O emissions were estimated to be 3.36 ± 0.30 kg N2O–N ha−1 after a total N applied from fertiliser and excreta of 608 ± 40 kg N ha−1 yr−1. Emissions of N2O were 1.9, 3.6 and 4.4 times lower than that estimated using the default IPCC 2019, 2006 or country-specific emission factors, respectively. The spatial distribution and size of excreta deposits was non-uniform, and in each grazing period, an average of 15.1% of the field was covered by urine patches and 1.0% by dung deposits. Some areas of the field repeatedly received urine deposits, accounting for an estimated total of 2410 kg N ha−1. The method reported in this study can provide better estimates of how management practices can mitigate N2O emissions, to develop more efficient selective approaches to fertiliser application, targeted nitrification inhibitor application and improvements in the current N2O inventory estimation.
AB - Most nitrogen (N) lost to the environment from grazed grassland is produced as a result of N excreted by livestock, released in the form of nitrous oxide (N2O) emissions, nitrate leaching and ammonia volatilisation. In addition to the N fertiliser applied, excreta deposited by grazing livestock constitute a heterogeneous excess of N, creating spatial hotspots of N losses. This study presents a yearlong N2O emissions map from a typical intensively managed temperate grassland, grazed periodically by a dairy herd. The excreta deposition mapping was undertaken using high-resolution RGB images captured with a remotely piloted aircraft system combined with N2O emissions measurements using closed statics chambers. The annual N2O emissions were estimated to be 3.36 ± 0.30 kg N2O–N ha−1 after a total N applied from fertiliser and excreta of 608 ± 40 kg N ha−1 yr−1. Emissions of N2O were 1.9, 3.6 and 4.4 times lower than that estimated using the default IPCC 2019, 2006 or country-specific emission factors, respectively. The spatial distribution and size of excreta deposits was non-uniform, and in each grazing period, an average of 15.1% of the field was covered by urine patches and 1.0% by dung deposits. Some areas of the field repeatedly received urine deposits, accounting for an estimated total of 2410 kg N ha−1. The method reported in this study can provide better estimates of how management practices can mitigate N2O emissions, to develop more efficient selective approaches to fertiliser application, targeted nitrification inhibitor application and improvements in the current N2O inventory estimation.
KW - IPCC inventory
KW - Remote sensing
KW - Spatial distribution map
KW - UAV
KW - Variable rate application
U2 - 10.1007/s11119-022-09908-0
DO - 10.1007/s11119-022-09908-0
M3 - Article
SN - 1385-2256
VL - 23
SP - 1743
EP - 1774
JO - Precision Agriculture
JF - Precision Agriculture
IS - 5
ER -