Abstract
We address the problem of capturing temporal information for video classification in 2D networks, without increasing computational cost. Existing approaches focus on modifying the architecture of 2D networks (e.g. by including filters in the temporal dimension to turn them into 3D networks, or using optical flow, etc.), which increases computation cost. Instead, we propose a novel sampling strategy, where we re-order the channels of the input video, to capture short-term frame-to-frame changes. We observe that without bells and whistles, the proposed sampling strategy improves performance on multiple architectures (e.g. TSN, TRN, and TSM) and datasets (CATER, Something-Something-V1 and V2), up to 24% over the baseline of using the standard video input. In addition, our sampling strategies do not require training from scratch and do not increase the computational cost of training and testing. Given the generality of the results and the flexibility of the approach, we hope this can be widely useful to the video understanding community.
Original language | English |
---|---|
Title of host publication | Proceedings of The 33rd British Machine Vision Conference (BMVC 2022) |
Publisher | BMVA Press |
Number of pages | 9 |
Publication status | Published - 25 Nov 2022 |
Event | The 33rd British Machine Vision Conference, 2022 - London, United Kingdom Duration: 21 Nov 2022 → 24 Nov 2022 Conference number: 33 https://www.bmvc2022.org/ |
Conference
Conference | The 33rd British Machine Vision Conference, 2022 |
---|---|
Abbreviated title | BMVC 2022 |
Country/Territory | United Kingdom |
City | London |
Period | 21/11/22 → 24/11/22 |
Internet address |