Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart

Elisa Avolio, Rajesh Katare, Anita C. Thomas, Andrea Caporali, Daryl Schwenke, Michele Carrabba, Marco Meloni, Massimo Caputo, Paolo Madeddu

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Pericytes (PC) are abundant yet remain the most enigmatic and ill-defined cell population in the heart. Here, we investigated if PC can be reprogrammed to aid neovascularization. Primary PC from human and mouse hearts acquired cytoskeleton proteins typical of vascular smooth muscle cells (VSMC) upon exclusion of EGF/bFGF, which signal through ERK1/2, or exposure to the MEK-inhibitor PD0325901. Differentiated PC became more proangiogenic, more responsive to vasoactive agents, and insensitive to chemoattractants. RNA-Sequencing revealed transcripts marking the PD0325901-induced transition into proangiogenic, stationary VSMC-like cells, including the unique expression of two angiogenesis-related markers, aquaporin 1 (AQP1) and cellular retinoic acid-binding protein 2 (CRABP2), which were further verified at the protein level. This enabled us to trace PC during in vivo studies. In mice, implantation of Matrigel plugs containing human PC+PD0325901 promoted the formation of α-SMApos neovessels compared with PC only. Two-week oral administration of PD0325901 to mice increased the heart arteriolar density, total vascular area, arteriole coverage by PDGFRβposAQP1posCRABP2pos PC, and myocardial perfusion. Short-duration PD0325901 treatment of mice after myocardial infarction enhanced the peri-infarct vascularization, reduced the scar, and improved systolic function. In conclusion, myocardial PC have intrinsic plasticity that can be pharmacologically modulated to promote reparative vascularization of the ischemic heart.
Original languageEnglish
JournalJournal of Clinical Investigation
Issue number10
Publication statusPublished - 16 May 2022


Dive into the research topics of 'Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart'. Together they form a unique fingerprint.

Cite this