Abstract / Description of output
Phylogenetic analysis of carotenoid biosynthetic pathway genes and their evolutionary rate variations were studied among eubacterial taxa. The gene sequences for the enzymes involved in this pathway were obtained for major phylogenetic groups of eubacteria (green sulfur bacteria, green nonsulphur bacteria, Gram-positive bacteria, proteobacteria, flavobacteria, cyanobacteria) and archeabacteria. These gene datasets were distributed under five major steps of carotenoid biosynthesis in eubacteria; isoprenoid precursor biosynthesis, phytoene synthesis, dehydrogenation of phytoene, lycopene cyclization, formation of acyclic xanthophylls, formation of cyclic xanthophylls and carotenoid biosynthesis regulation. The NJ algorithm was used on protein coding DNA sequences to deduce the evolutionary relationship for the respective crt genes among different eubacterial lineages. The rate of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S)) were calculated for different clades of the respective phylogenetic tree for specific crt genes. The phylogenetic analysis suggests that evolutionary pattern of crt genes in eubacteria is characterized by lateral gene transfer and gene duplication events. The d(N) values indicate that carotenoid biosynthetic genes are more conserved in proteobacteria than in any other eubacterial phyla. Furthermore, of the genes involved in carotenoid biosynthesis pathway, structural genes evolve slowly than the regulatory genes in eubacteria.
Original language | English |
---|---|
Pages (from-to) | 35-43 |
Number of pages | 9 |
Journal | Gene |
Volume | 345 |
Issue number | 1 |
DOIs | |
Publication status | Published - 17 Jan 2005 |
Keywords / Materials (for Non-textual outputs)
- Bacteria
- Bacterial Proteins
- Carotenoids
- Cyclization
- Evolution, Molecular
- Farnesyl-Diphosphate Farnesyltransferase
- Oxidoreductases
- Phylogeny
- Xanthophylls