Projects per year
Abstract
Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at the identification of commercially available compounds to guide further mechanistic studies. We therefore screened for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively, prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer. Results: We found distinct, largely nonoverlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including, e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, β-adrenergic receptor agonists, and Na +/K + ATPase inhibitors, displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggest that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.
Original language | English |
---|---|
Pages (from-to) | 680-700 |
Number of pages | 21 |
Journal | Acs chemical biology |
Volume | 17 |
Issue number | 3 |
Early online date | 24 Feb 2022 |
DOIs | |
Publication status | Published - 18 Mar 2022 |
Keywords / Materials (for Non-textual outputs)
- nuclear size regulation
- cell migration
- metastasis
- chemical screen
Fingerprint
Dive into the research topics of 'Chemical interrogation of nuclear size identifies compounds with cancer cell line specific effects on migration and invasion'. Together they form a unique fingerprint.Projects
- 5 Finished
-
Nuclear Envelope Directed Genome Organisation in Myogenesis and Emery-Dreifuss Muscular Dystrophy
Schirmer, E. (Principal Investigator)
1/08/18 → 31/07/22
Project: Research
-
Core funding renewal for the Wellcome Trust Centre for Cell Biology
Tollervey, D. (Principal Investigator) & Earnshaw, B. (Co-investigator)
1/10/11 → 30/04/17
Project: Research
-
Nuclear envelope transmembrane protein regulation of tissue-specific genome organisation and cell cycle regulation
Schirmer, E. (Principal Investigator)
1/08/11 → 31/07/19
Project: Research
Equipment
-
Edinburgh Drug Discovery
Unciti-Broceta, A. (Manager), Webster, S. (Manager) & Carragher, N. (Manager)
Deanery of Molecular, Genetic and Population Health SciencesFacility/equipment: Facility