Chemical interrogation of nuclear size identifies compounds with cancer cell line specific effects on migration and invasion

Sylvain Tollis, Andrea Rizzotto, Nhan Pham, Sonja Koivukoski, Aishwarya Sivakumar, Steven Shave, Jan Wildenhain, Nikolaj Zuleger, Jeremy T. Keys, Jayne Culley, Yijing Zheng, Jan Lammerding, Neil O Carragher, Valerie G Brunton, Leena Latonen, Manfred Auer, Mike Tyers, Eric C. Schirmer

Research output: Contribution to journalArticlepeer-review


Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at identification of commercially available compounds to guide further mechanistic studies. We therefore screened for FDA/EMA­ approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting respectively prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer.

Results: We found distinct, largely non-overlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including e.g. serotonin uptake inhibitors, cyclo-oxygenase inhibitors, beta-adrenergic receptor agonists, and Na+/K+ ATPase inhibitors displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion.

Conclusions: Our study provides (a) proof-of-concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment, and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggests that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.
Original languageEnglish
Number of pages21
JournalAcs chemical biology
Early online date24 Feb 2022
Publication statusE-pub ahead of print - 24 Feb 2022


  • nuclear size regulation
  • cell migration
  • metastasis
  • chemical screen


Dive into the research topics of 'Chemical interrogation of nuclear size identifies compounds with cancer cell line specific effects on migration and invasion'. Together they form a unique fingerprint.

Cite this