Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction

Craig Balmforth, Job J.M.H. van Bragt, Titia Ruijs, James Cameron, Robert A. Kimmitt, Rebecca Moorhouse, Alicja Czopek, Hu May Khei, Peter James Gallacher, James Dear, Shyamanga Borooah, Iain MacIntyre, Tom MC Pearson, Laura Willox, Dinesh Talwar, Muriel Tafflet, Christophe Roubeix, Florian Sennlaub, Siddharthan Chandran, Baljean DhillonDavid J Webb, Neeraj Dhaun

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

BACKGROUND. Chronic kidney disease (CKD) is strongly associated with cardiovascular disease and there is an established association between vasculopathy affecting the kidney and eye. Optical coherence tomography (OCT) is a novel, rapid method for high-definition imaging of the retina and choroid. Its use in patients at high cardiovascular disease risk remains unexplored. METHODS. We used the new SPECTRALIS OCT machine to examine retinal and retinal nerve fiber layer (RNFL) thickness, macular volume, and choroidal thickness in a prospective cross-sectional study in 150 subjects: 50 patients with hypertension (defined as a documented clinic BP greater than or equal to 140/90 mmHg (prior to starting any treatment) with no underlying cause identified); 50 with CKD (estimated glomerular filtration rate (eGFR) 8–125 ml/min/1.73 m2); and 50 matched healthy controls. We excluded those with diabetes. The same, masked ophthalmologist carried out each study. Plasma IL-6, TNF-α , asymmetric dimethylarginine (ADMA), and endothelin-1 (ET-1), as measures of inflammation and endothelial function, were also assessed. RESULTS. Retinal thickness, macular volume, and choroidal thickness were all reduced in CKD compared with hypertensive and healthy subjects (for retinal thickness and macular volume P < 0.0001 for CKD vs. healthy and for CKD vs. hypertensive subjects; for choroidal thickness P < 0.001 for CKD vs. healthy and for CKD vs. hypertensive subjects). RNFL thickness did not differ between groups. Interestingly, a thinner choroid was associated with a lower eGFR (r = 0.35, P <0.0001) and, in CKD, with proteinuria (r = –0.58, P < 0.001) as well as increased circulating C-reactive protein (r = –0.57, P = 0.0002), IL-6 (r = –0.40, P < 0.01), ADMA (r = –0.37, P = 0.02), and ET-1 (r = –0.44, P < 0.01). Finally, choroidal thinning was associated with renal histological inflammation and arterial stiffness. In a model of hypertension, choroidal thinning was seen only in the presence of renal injury. CONCLUSIONS. Chorioretinal thinning in CKD is associated with lower eGFR and greater proteinuria, but not BP. Larger studies, in more targeted groups of patients, are now needed to clarify whether these eye changes reflect the natural history of CKD. Similarly, the associations with arterial stiffness, inflammation, and endothelial dysfunction warrant further examination.
Original languageEnglish
Journal JCI Insight
Volume1
Issue number20
DOIs
Publication statusPublished - 8 Dec 2016

Fingerprint

Dive into the research topics of 'Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction'. Together they form a unique fingerprint.

Cite this