TY - JOUR
T1 - Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of JWST
AU - Habouzit, Melanie
AU - Onoue, Masafusa
AU - Banados, Eduardo
AU - Neeleman, Marcel
AU - Angles-Alcazar, Daniel
AU - Walter, Fabian
AU - Pillepich, Annalisa
AU - Dave, Romeel
AU - Jahnke, Knud
AU - Dubois, Yohan
N1 - published in MNRAS, 19 pages, 8 figures, key figures: Fig. 3, Fig.5, and Fig. 7
Publisher Copyright:
© 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - The James Webb Space Telescope will have the power to characterize high-redshift quasars at z>6 with an unprecedented depth and spatial resolution. While the brightest quasars at such redshift (i.e., with bolometric luminosity L_bol> 10^46 erg/s) provide us with key information on the most extreme objects in the Universe, measuring the black hole (BH) mass and Eddington ratios of fainter quasars with L_bol= 10^45-10^46 erg/s opens a path to understand the build-up of more normal BHs at z>6. In this paper, we show that the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA large-scale cosmological simulations do not agree on whether BHs at z>4 are overmassive or undermassive at fixed galaxy stellar mass with respect to the M_BH-M_star scaling relation at z=0 (BH mass offsets). Our conclusions are unchanged when using the local scaling relation produced by each simulation or empirical relations. We find that the BH mass offsets of the simulated faint quasar population at z>4, unlike those of bright quasars, represent the BH mass offsets of the entire BH population, for all the simulations. Thus, a population of faint quasars with L_bol= 10^45-10^46 erg/s observed by JWST can provide key constraints on the assembly of BHs at high redshift. Moreover, this will help constraining the high-redshift regime of cosmological simulations, including BH seeding, early growth, and co-evolution with the host galaxies. Our results also motivate the need for simulations of larger cosmological volumes down to z=6, with the same diversity of sub-grid physics, in order to gain statistics on the most extreme objects at high redshift.
AB - The James Webb Space Telescope will have the power to characterize high-redshift quasars at z>6 with an unprecedented depth and spatial resolution. While the brightest quasars at such redshift (i.e., with bolometric luminosity L_bol> 10^46 erg/s) provide us with key information on the most extreme objects in the Universe, measuring the black hole (BH) mass and Eddington ratios of fainter quasars with L_bol= 10^45-10^46 erg/s opens a path to understand the build-up of more normal BHs at z>6. In this paper, we show that the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA large-scale cosmological simulations do not agree on whether BHs at z>4 are overmassive or undermassive at fixed galaxy stellar mass with respect to the M_BH-M_star scaling relation at z=0 (BH mass offsets). Our conclusions are unchanged when using the local scaling relation produced by each simulation or empirical relations. We find that the BH mass offsets of the simulated faint quasar population at z>4, unlike those of bright quasars, represent the BH mass offsets of the entire BH population, for all the simulations. Thus, a population of faint quasars with L_bol= 10^45-10^46 erg/s observed by JWST can provide key constraints on the assembly of BHs at high redshift. Moreover, this will help constraining the high-redshift regime of cosmological simulations, including BH seeding, early growth, and co-evolution with the host galaxies. Our results also motivate the need for simulations of larger cosmological volumes down to z=6, with the same diversity of sub-grid physics, in order to gain statistics on the most extreme objects at high redshift.
KW - black hole physics
KW - galaxies: evolution
KW - galaxies: formation
KW - methods: numerical
U2 - 10.1093/mnras/stac225
DO - 10.1093/mnras/stac225
M3 - Article
SN - 0035-8711
VL - 511
SP - 3751
EP - 3767
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -