Projects per year
Abstract / Description of output
Objective: To assess brain structural connectivity in relation to cognitive abilities in healthy ageing, and the mediating effects of white matter hyper‐intensity (WMH) volume.
Methods: MRI data were analysed in 558 members of the Lothian Birth Cohort 1936. Brains were segmented into 85 regions and combined with tractography to generate structural connectomes. WMH volume was quantified. Relationships between whole‐brain connectivity, assessed using graph theory metrics, and four major domains of cognitive ability (visuospatial reasoning, verbal memory, information processing speed and crystallized ability) were investigated, as was the mediating effects of WMH volume on these relationships.
Results: Visuospatial reasoning was associated with network strength, mean shortest path length, and global efficiency. Memory was not associated with any network connectivity metric. Information processing speed and crystallized ability were associated with all network measures. Some relationships were lost when adjusted for mean network FA. WMH volume mediated 11%–15% of the relationships between most network measures and information processing speed, even after adjusting for mean network FA.
Conclusion: Brain structural connectivity relates to visuospatial reasoning, information processing speed and crystallized ability, but not memory, in this relatively healthy age‐homogeneous cohort of 73 year olds. When adjusted for mean FA across the network, most relationships are lost, except with information processing speed suggesting that the underlying topological network structure is related to this cognitive domain. Moreover, the connectome‐processing speed relationship is partly mediated by WMH volume in this cohort.
Methods: MRI data were analysed in 558 members of the Lothian Birth Cohort 1936. Brains were segmented into 85 regions and combined with tractography to generate structural connectomes. WMH volume was quantified. Relationships between whole‐brain connectivity, assessed using graph theory metrics, and four major domains of cognitive ability (visuospatial reasoning, verbal memory, information processing speed and crystallized ability) were investigated, as was the mediating effects of WMH volume on these relationships.
Results: Visuospatial reasoning was associated with network strength, mean shortest path length, and global efficiency. Memory was not associated with any network connectivity metric. Information processing speed and crystallized ability were associated with all network measures. Some relationships were lost when adjusted for mean network FA. WMH volume mediated 11%–15% of the relationships between most network measures and information processing speed, even after adjusting for mean network FA.
Conclusion: Brain structural connectivity relates to visuospatial reasoning, information processing speed and crystallized ability, but not memory, in this relatively healthy age‐homogeneous cohort of 73 year olds. When adjusted for mean FA across the network, most relationships are lost, except with information processing speed suggesting that the underlying topological network structure is related to this cognitive domain. Moreover, the connectome‐processing speed relationship is partly mediated by WMH volume in this cohort.
Original language | English |
---|---|
Pages (from-to) | 622-632 |
Number of pages | 11 |
Journal | Human Brain Mapping |
Volume | 39 |
Issue number | 2 |
Early online date | 14 Nov 2017 |
DOIs | |
Publication status | Published - 28 Feb 2018 |
Fingerprint
Dive into the research topics of 'Cognitive abilities, brain white matter hyperintensity volume and structural network connectivity in older age'. Together they form a unique fingerprint.Projects
- 5 Finished
-
-
Brain imaging and cognitive ageing in the Lothian Birth Cohort 1936: III
Wardlaw, J., Bastin, M. & Deary, I.
1/05/15 → 30/04/19
Project: Research
-
RA2661 Centre for Cognitive Ageing and Cognitive Epidemiology Phase 2. Main Budget.
Deary, I., Gale, C., Holmes, M., Logie, P., Maclullich, A., Porteous, D., Seckl, J., Starr, J., Wardlaw, J. & Okely, J.
1/09/13 → 31/08/19
Project: Research
Profiles
-
Mark Bastin
- Deanery of Clinical Sciences - Personal Chair of Brain Imaging
- Centre for Clinical Brain Sciences
- Euan MacDonald Centre for Motor Neuron Disease Research
- Edinburgh Neuroscience
- Edinburgh Imaging
Person: Academic: Research Active