Comparative genomic analysis and phylogenetic position of Theileria equi

Lowell S. Kappmeyer, Mathangi Thiagarajan, David R. Herndon, Joshua D. Ramsay, Elisabet Caler, Appolinaire Djikeng, Joseph J. Gillespie, Audrey O. T. Lau, Eric H. Roalson, Joana C. Silva, Marta G. Silva, Carlos E. Suarez, Massaro W. Ueti, Vishvanath M. Nene, Robert H. Mealey, Donald P. Knowles, Kelly A. Brayton*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites.

Results: The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp.

Conclusions: The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.

Original languageEnglish
Article number603
Number of pages13
JournalBMC Genomics
Volume13
DOIs
Publication statusPublished - 9 Nov 2012

Keywords

  • Apicomplexa
  • Parasite
  • Vaccine
  • Horse
  • Vector-borne disease
  • APICAL MEMBRANE ANTIGEN-1
  • PARASITE PLASMODIUM-FALCIPARUM
  • HIGH-LEVEL EXPRESSION
  • BABESIA-EQUI
  • ERYTHROCYTE INVASION
  • ARABIDOPSIS GENOME
  • INFECTED HORSES
  • SURFACE PROTEIN
  • IN-VITRO
  • BOVIS

Cite this