Comparative transcriptomic profiling of myxomatous mitral valve disease in the Cavalier King Charles Spaniel

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Background. Almost all elderly dogs develop myxomatous mitral valve disease by the end of their life, but the Cavalier King Charles Spaniel (CKCS) has a heightened susceptibility, frequently resulting in death at a young age and suggesting that there is a genetic component to the condition in this breed. Transcriptional profiling can reveal the impact of genetic variation through differences in gene expression levels. The aim of this study was to
determine whether expression patterns were different in mitral valves showing myxomatous degeneration from CKCS dogs compared to valves from non-CKCS dogs.
Results. Gene expression patterns in three groups of canine valves resulted in distinct separation of normal valves, diseased valves from CKCS and diseased valves from other breeds; the latter were more similar to the normal valves than were the valves from CKCS. Gene expression patterns in diseased valves from CKCS dogs were quite different from those in the valves from other dogs, both affected and normal. Patterns in all diseased valves (from CKCS and other breeds) were also somewhat different from normal non-diseased samples. Analysis of differentially expressed genes showed enrichment in GO terms relating to cardiac development and function and to calcium signalling canonical pathway in the genes down regulated in the diseased valves from CKCS, compared to normal valves and of diseased valves from other breeds. F2 (prothrombin) (CKCS diseased valves compared to normal) and MEF2C pathway activation (CKCS diseased valves compared to non-CKCS diseased valves) had the strongest association with the gene changes. A large number of genes that were differentially expressed in the CKCS diseased valves compared with normal valves and
diseased valves from other breeds were associated with cardiomyocytes including CASQ2, TNNI3 and RYR2.
Conclusion. Transcriptomic profiling identified gene expression changes in CKCS diseased valves that were not present in age and disease severity-matched non-CKCS valves. Thesegenes are associated with cardiomyocytes, coagulation a 46 nd extra-cellular matrix remodelling. Identification of genes that vary in the CKCS will allow exploration of genetic variation to understand the aetiology of the disease in this breed, and ultimately development of breeding strategies to eliminate this disease from the breed.
Original languageEnglish
JournalBMC Veterinary Research
Early online date23 Sept 2020
DOIs
Publication statusE-pub ahead of print - 23 Sept 2020

Keywords / Materials (for Non-textual outputs)

  • Genes expression
  • Gene clustering
  • Gene networks
  • Myxomatous mitral valve didease
  • Cavalier King Charles Spaniel

Fingerprint

Dive into the research topics of 'Comparative transcriptomic profiling of myxomatous mitral valve disease in the Cavalier King Charles Spaniel'. Together they form a unique fingerprint.

Cite this