Abstract
Reversible computing is motivated by both pragmatic and foundational considerations arising from a variety of disciplines. We take a particular path through the development of reversible computation, emphasizing compositional reversible computation. We start from a historical perspective, by reviewing those approaches that developed reversible extensions of lambda-calculi, Turing machines, and communicating process calculi. These approaches share a common challenge: computations made reversible in this way do not naturally compose locally.
We then turn our attention to computational models that eschew the detour via existing irreversible models. Building on an original analysis by Landauer, the insights of Bennett, Fredkin, and Toffoli introduced a fresh approach to reversible computing in which reversibility is elevated to the status of the main design principle. These initial models are expressed using low-level bit manipulations, however.
Abstracting from the low-level of the Bennett-Fredkin-Toffoli models and pursuing more intrinsic, typed, and algebraic models, naturally leads to rig categories as the canonical model for compositional reversible programming. The categorical model reveals connections to type isomorphisms, symmetries, permutations, groups, and univalent universes. This, in turn, paves the way for extensions to reversible programming based on monads and arrows. These extensions are shown to recover conventional irreversible programming, a variety of reversible computational effects, and more interestingly both pure (measurement-free) and measurement-based quantum programming.
We then turn our attention to computational models that eschew the detour via existing irreversible models. Building on an original analysis by Landauer, the insights of Bennett, Fredkin, and Toffoli introduced a fresh approach to reversible computing in which reversibility is elevated to the status of the main design principle. These initial models are expressed using low-level bit manipulations, however.
Abstracting from the low-level of the Bennett-Fredkin-Toffoli models and pursuing more intrinsic, typed, and algebraic models, naturally leads to rig categories as the canonical model for compositional reversible programming. The categorical model reveals connections to type isomorphisms, symmetries, permutations, groups, and univalent universes. This, in turn, paves the way for extensions to reversible programming based on monads and arrows. These extensions are shown to recover conventional irreversible programming, a variety of reversible computational effects, and more interestingly both pure (measurement-free) and measurement-based quantum programming.
Original language | English |
---|---|
Title of host publication | International Conference on Reversible Computation |
Editors | Torben Ægidius Mogensen, Łukasz Mikulski |
Publisher | Springer |
Pages | 10-27 |
Number of pages | 18 |
Volume | 14680 |
ISBN (Electronic) | 9783031620768 |
ISBN (Print) | 9783031620751 |
DOIs | |
Publication status | Published - 29 May 2024 |
Event | 16th International Conference on Reversible Computation - Toruń, Poland Duration: 4 Jul 2024 → 5 Jul 2024 https://rc2024.mat.umk.pl/ |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Publisher | Springer |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 16th International Conference on Reversible Computation |
---|---|
Abbreviated title | RC 2024 |
Country/Territory | Poland |
City | Toruń |
Period | 4/07/24 → 5/07/24 |
Internet address |
Keywords / Materials (for Non-textual outputs)
- rig categories
- information effects
- quantum computing