TY - JOUR
T1 - Computable model on the collision integral of Boltzmann equation and application to rarefied aerodynamics
AU - Wu, Lei
AU - Zhang, Yong Hao
AU - Li, Zhi Hui
N1 - M1 - 070004
PY - 2017/3/24
Y1 - 2017/3/24
N2 - Due to its complexity in dealing with the collisional integral term of the Boltzmann equation and computational costs associated with multi-dimensional problems, deterministic methods are still restricted to simple flow such as one-dimensional linear flow. However, the recently emerged fast spectrum method has achieved breakthroughs in computational efficiency and accuracy, which can enable simulations for more realistic three-dimensional non-linear flows. In comparison with the dominant direct simulation Monte Carlo method, the deterministic method has advantages especially in simulating lowspeed flows where statistical variations prevail. Here, we review the development of fast spectrum method and discuss its applications for practical flow simulations. In particular, extended Boltzmann model is required for polyatomic and dense gases where the Boltzmann equation may not be valid. We present the applications of extended Boltzmann model for polyatomic gases in predicting spectra of both spontaneous and coherent Rayleigh-Brillouin Scattering, and in simulating space vehicle reentries with a broad range of Kn. Finally, we discuss the gas-kinetic unified algorithm (GKUA) of computable model Boltzmann equation and applications to the hypersonic aerodynamics of space reentry covering various flow regimes.
AB - Due to its complexity in dealing with the collisional integral term of the Boltzmann equation and computational costs associated with multi-dimensional problems, deterministic methods are still restricted to simple flow such as one-dimensional linear flow. However, the recently emerged fast spectrum method has achieved breakthroughs in computational efficiency and accuracy, which can enable simulations for more realistic three-dimensional non-linear flows. In comparison with the dominant direct simulation Monte Carlo method, the deterministic method has advantages especially in simulating lowspeed flows where statistical variations prevail. Here, we review the development of fast spectrum method and discuss its applications for practical flow simulations. In particular, extended Boltzmann model is required for polyatomic and dense gases where the Boltzmann equation may not be valid. We present the applications of extended Boltzmann model for polyatomic gases in predicting spectra of both spontaneous and coherent Rayleigh-Brillouin Scattering, and in simulating space vehicle reentries with a broad range of Kn. Finally, we discuss the gas-kinetic unified algorithm (GKUA) of computable model Boltzmann equation and applications to the hypersonic aerodynamics of space reentry covering various flow regimes.
KW - Boltzmann equation
KW - Discrete velocity method
KW - Fast spectrum method
KW - Gas kinetic theory
KW - Gaskinetic unified algorithm
KW - Rarefied gas dynamics
UR - https://strathprints.strath.ac.uk/69576/
U2 - 10.1360/SSPMA2016-00409
DO - 10.1360/SSPMA2016-00409
M3 - Article
VL - 47
JO - Scientia Sinica: Physica, Mechanica et Astronomica
JF - Scientia Sinica: Physica, Mechanica et Astronomica
SN - 1674-7275
IS - 7
ER -