Conditional degradation of plasmodium calcineurin reveals functions in parasite colonization of both host and vector

Nisha Philip, Andrew P. Waters

Research output: Contribution to journalArticlepeer-review

Abstract

Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle.

Original languageEnglish
Pages (from-to)122-131
Number of pages10
JournalCell Host & Microbe
Volume18
Issue number1
Early online date25 Jun 2015
DOIs
Publication statusPublished - 8 Jul 2015

Keywords

  • animals
  • genetically modified
  • calcineurin
  • culicidae
  • host-parasite interactions
  • indoleacetic acids
  • mice
  • plasmodium berghei
  • proteolysis
  • protozoan proteins

Fingerprint

Dive into the research topics of 'Conditional degradation of plasmodium calcineurin reveals functions in parasite colonization of both host and vector'. Together they form a unique fingerprint.

Cite this