## Abstract / Description of output

In this talk I shall discuss a general category-theoretic structure for modelling conditional independence. The standard notion of conditional independence in probability theory provides a motivating example. But other rather different examples arise in many contexts: computability theory, nominal sets (used to model `names' in computer science), separation logic (used to reason about heap memory in computer science), and others.

Category-theoretic structure common to these examples can be axiomatized by the notion of a category with local independent products, which combines fibrational and symmetric monoidal structure in a somewhat particular way. In the talk I shall expound this notion, and I shall present several illustrative examples of such structure. If time permits, I may also describe some curious connections with topos theory.

Category-theoretic structure common to these examples can be axiomatized by the notion of a category with local independent products, which combines fibrational and symmetric monoidal structure in a somewhat particular way. In the talk I shall expound this notion, and I shall present several illustrative examples of such structure. If time permits, I may also describe some curious connections with topos theory.

Original language | English |
---|---|

Title of host publication | TACL 2013. Sixth International Conference on Topology, Algebra and Categories in Logic, Vanderbilt University, Nashville, Tennessee, USA, July 28 - August 1, 2013 |

Pages | 9 |

Number of pages | 1 |

Publication status | Published - 2013 |