Conserved genetic architecture underlying individual recombination rate variation in a wild population of soay sheep (ovis aries)

Susan Johnston, Camillo Berenos, Jon Slate, Josephine Pemberton

Research output: Contribution to journalArticlepeer-review


Meiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rates. Individual rates were high relative to other mammal systems and were higher in males than in females (autosomal map lengths of 3748 and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes (h2 = 0.16 and 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a subtelomeric region on chromosome 6; a genome-wide association study showed the strongest associations at locus RNF212, with further associations observed at a nearby ∼374-kb region of complete LD containing three additional candidate loci, CPLX1, GAK, and PCGF3. A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle, and humans, suggesting a common genetic architecture of recombination rate variation in mammals.
Original languageEnglish
Pages (from-to)583-598
Number of pages16
Issue number1
Early online date29 Mar 2016
Publication statusPublished - 1 May 2016


  • meiotic recombination
  • genome-wide association study
  • genomic relatedness
  • heritability
  • natural population


Dive into the research topics of 'Conserved genetic architecture underlying individual recombination rate variation in a wild population of soay sheep (ovis aries)'. Together they form a unique fingerprint.

Cite this