Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data

(DES Collaboration), A. Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We study a phenomenological class of models where dark matter converts to dark radiation in the low redshift epoch. This class of models, dubbed DMDR, characterizes the evolution of comoving dark-matter density with two extra parameters, and may be able to help alleviate the observed discrepancies between early and late-time probes of the Universe. We investigate how the conversion affects key cosmological observables such as the cosmic microwave background (CMB) temperature and matter power spectra. Combining 3x2pt data from Year 1 of the Dark Energy Survey, Planck-2018 CMB temperature and polarization data, supernovae (SN) Type Ia data from Pantheon, and baryon acoustic oscillation (BAO) data from BOSS DR12, MGS and 6dFGS, we place new constraints on the amount of dark matter that has converted to dark radiation and the rate of this conversion. The fraction of the dark matter that has converted since the beginning of the Universe in units of the current amount of dark matter, ζ, is constrained at 68% confidence level to be
Original languageEnglish
Article number123528
Pages (from-to)1-25
Number of pages25
JournalPhysical Review D
Volume103
Issue number12
DOIs
Publication statusPublished - 10 Jun 2021

Keywords / Materials (for Non-textual outputs)

  • astro-ph.CO
  • hep-ph

Fingerprint

Dive into the research topics of 'Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data'. Together they form a unique fingerprint.

Cite this