Continuum Limit Physics from 2+1 Flavor Domain Wall QCD

Y. Aoki, R. Arthur, T. Blum, P. boyle, D. Brommel, N. christ, C. Dawson, J. flynn, T. Izubuchi, X-Y. Jin, C. Jung, C. Kelly, M. Li, A. Lichtl, M. Lightman, M. lin, R. mawhinney, C. maynard, S. Ohta, B. pendletonC. sachrajda, E. scholz, A. Soni, J. Wennekers, J. zanotti, R. Zhou

Research output: Contribution to journalArticlepeer-review


We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing $a$, ($a^{-1}$=\,1.73\,(3)\,GeV and $a^{-1}$=\,2.28\,(3)\,GeV). On the coarser lattice, with $24^3\times 64\times 16$ points, the analysis of ref.[1] is extended to approximately twice the number of configurations. The ensembles on the finer $32^3\times 64\times 16$ lattice are new. We explain how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure at two lattice spacings, with unitary pion masses in the approximate range 290--420\,MeV (225--420\,MeV for partially quenched pions). We use the masses of the $\pi$ and $K$ mesons and the $\Omega$ baryon to determine the physical quark masses and the values of the lattice spacing. While our data are consistent with the predictions of NLO SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. Our main results include $f_\pi=124(2)_{\rm stat}(5)_{\rm syst}$\,MeV, $f_K/f_\pi=1.204(7)(25)$ where $f_K$ is the kaon decay constant, $m_s^{\bar{\textrm{MS}}}(2\,\textrm{GeV})=(96.2\pm 2.7)$\,MeV and $m_{ud}^{\bar{\textrm{MS}}}(2\,\textrm{GeV})=(3.59\pm 0.21)$\,MeV\, ($m_s/m_{ud}=26.8\pm 1.4$) where $m_s$ and $m_{ud}$ are the mass of the strange-quark and the average of the up and down quark masses respectively, $[\Sigma^{\msbar}(2 {\rm GeV})]^{1/3} = 256(6)\; {\rm MeV}$, where $\Sigma$ is the chiral condensate, the Sommer scale $r_0=0.487(9)$\,fm and $r_1=0.333(9)$\,fm.
Original languageEnglish
Article number074508
Number of pages72
JournalPhysical Review D, particles, fields, gravitation, and cosmology
Issue number7
Publication statusPublished - 22 Apr 2011


Dive into the research topics of 'Continuum Limit Physics from 2+1 Flavor Domain Wall QCD'. Together they form a unique fingerprint.

Cite this