TY - JOUR
T1 - Cosmological baryon spread and impact on matter clustering in CAMELS
AU - Gebhardt, Matthew
AU - Anglés-Alcázar, Daniel
AU - Borrow, Josh
AU - Genel, Shy
AU - Villaescusa-Navarro, Francisco
AU - Ni, Yueying
AU - Lovell, Christopher C.
AU - Nagai, Daisuke
AU - Davé, Romeel
AU - Marinacci, Federico
AU - Vogelsberger, Mark
AU - Hernquist, Lars
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to k ∼10 hMpc-1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.
AB - We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to k ∼10 hMpc-1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.
KW - cosmology: large-scale structure of Universe
KW - galaxies: evolution
KW - galaxies: formation
UR - http://www.scopus.com/inward/record.url?scp=85192009563&partnerID=8YFLogxK
U2 - 10.1093/mnras/stae817
DO - 10.1093/mnras/stae817
M3 - Article
AN - SCOPUS:85192009563
SN - 0035-8711
VL - 529
SP - 4896
EP - 4913
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -