Cost-Effective Quasi-Parallel Sensing Instrumentation for Industrial Chemical Species Tomography

Godwin Enemali, Rui Zhang, Hugh McCann, Chang Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Chemical Species Tomography (CST) has been widely applied for imaging of critical gas-phase parameters in industrial processes. To acquire high-fidelity images, CST is typically implemented by line-of-sight Wavelength Modulation Spectroscopy (WMS) measurements from multiple laser beams. In this work, we present a quasi-parallel sensing technique and electronic circuits for industrial CST that facilitates cost-effective implementation of industrial CST with very low complexity and reduced load on data transfer compared to the fully parallel sensing technique. Although the acquisition and processing of these multiple beams using a fully parallel data acquisition (DAQ) and signal processing system can achieve maximised temporal response in CST, it leads to a highly complex and power-consuming instrumentation with electronics-caused inconsistency between the sampled beams, in addition to significant burden on data transfer infrastructure. To address these issues, the digitisation and demodulation of the multi-beam signals in the proposed quasi-parallel sensing technique are multiplexed over the high-frequency modulation within a wavelength scan. Our development not only maintains the temporal response of the fully parallel sensing scheme, but also facilitates the cost-effective implementation of industrial CST with very low complexity and reduced load on data transfer. The proposed technique was analytically proofed and then numerically examined by noise-contaminated CST simulations. Finally, the designed electronics was experimentally validated using a lab-scale CST system with 32 laser beams.
Original languageEnglish
JournalIEEE Transactions on Industrial Electronics
Early online date10 Mar 2021
DOIs
Publication statusE-pub ahead of print - 10 Mar 2021

Keywords

  • Chemical Species Tomography (CST)
  • Wavelength Modulation Spectroscopy (WMS)
  • quasi-parallel
  • data acquisition
  • digital lock-in
  • instrumentation

Fingerprint

Dive into the research topics of 'Cost-Effective Quasi-Parallel Sensing Instrumentation for Industrial Chemical Species Tomography'. Together they form a unique fingerprint.

Cite this