Abstract / Description of output
Using a field-theoretical representation of the Tanaka-Edwards integral, we develop a method to systematically compute the number N-s of one-spin stable states (local energy minima) of a glassy Ising system with nearest-neighbor interactions and random Gaussian couplings on an arbitrary graph. In particular, we use this method to determine N-s for K-regular random graphs and d-dimensional regular lattices for d=2,3. The method works also for other graphs. Excellent accuracy of the results allows us to observe that the number of local energy minima depends mainly on local properties of the graph on which the spin glass is defined.
Original language | English |
---|---|
Article number | 041114 |
Pages (from-to) | - |
Number of pages | 7 |
Journal | Physical Review E |
Volume | 77 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2008 |
Keywords / Materials (for Non-textual outputs)
- LANDSCAPE
- CHAIN