Projects per year
Abstract
In this paper, we look at the problem of cross-domain few-shot classification that aims to learn a classifier from previously unseen classes and domains with few labeled samples. Recent approaches broadly solve this problem by parameterizing their few-shot classifiers with task-agnostic and task-specific weights where the former is typically learned on a large training set and the latter is dynamically predicted through an auxiliary network conditioned on a small support set. In this work, we focus on the estimation of the latter, and propose to learn task-specific weights from scratch directly on a small support set, in contrast to dynamically estimating them. In particular, through systematic analysis, we show that task-specific weights through parametric adapters in matrix form with residual connections to multiple intermediate layers of a backbone network significantly improves the performance of the state-of-the-art models in the Meta-Dataset benchmark with minor additional cost.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 7151-7160 |
Number of pages | 19 |
ISBN (Electronic) | 978-1-6654-6946-3 |
ISBN (Print) | 978-1-6654-6947-0 |
DOIs | |
Publication status | Published - 27 Sep 2022 |
Event | IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022 - New Orleans, United States Duration: 19 Jun 2022 → 24 Jun 2022 https://cvpr2022.thecvf.com/ |
Publication series
Name | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
---|---|
Publisher | IEEE |
ISSN (Print) | 1063-6919 |
ISSN (Electronic) | 2575-7075 |
Conference
Conference | IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022 |
---|---|
Abbreviated title | CVPR 2022 |
Country/Territory | United States |
City | New Orleans |
Period | 19/06/22 → 24/06/22 |
Internet address |
Fingerprint
Dive into the research topics of 'Cross-domain Few-shot Learning with Task-specific Adapters'. Together they form a unique fingerprint.Projects
- 1 Active