Cross-Domain Multitask Model for Head Detection and Facial Attribute Estimation

Saber Mirzaee Bafti, Sotirios Chatzidimitriadis, Konstantinos Sirlantzis

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Extracting specific attributes of a face within an image, such as emotion, age, or head pose has numerous applications. As one of the most widely used vision-based attribute extraction models, HPE (Head Pose Estimation) models have been extensively explored. In spite of the success of these models, the pre-processing step of cropping the region of interest from the image, before it is fed into the network, is still a challenge. Moreover, a significant portion of the existing models are problem-specific models developed specifically for HPE. In response to the wide application of HPE models and the limitations of existing techniques, we developed a multi-purpose, multi-task model to parallelize face detection and pose estimation (i.e., along both axes of yaw and pitch). This model is based on the Mask-RCNN object detection model, which computes a collection of mid-level shared features in conjunction with some independent neural networks, for the detection of faces and the estimation of poses. We evaluated the proposed model using two publicly available datasets, Prima and BIWI, and obtained MAEs (Mean Absolute Errors) of 8.0 ± 8.6, and 8.2 ± 8.1 for yaw and pitch detection on Prima, and 6.2 ± 4.7, and 6.6 ± 4.9 on BIWI dataset. The generalization capability of the model and its cross-domain effectiveness was assessed on the publicly available dataset of UTKFace for face detection and age estimation, resulting a MAE of 5.3 ± 3.2. A comparison of the proposed model’s performance on the domains it was tested on reveals that it compares favorably with the state-of-the-art models, as demonstrated by their published results. We provide the source code of our model for public use at:
Original languageEnglish
Pages (from-to)54703-54712
Number of pages10
JournalIEEE Access
Publication statusPublished - 20 May 2022

Keywords / Materials (for Non-textual outputs)

  • Head tracking
  • head pose estimation
  • multi-task learning
  • age detection
  • object detection
  • mask R-CNN


Dive into the research topics of 'Cross-Domain Multitask Model for Head Detection and Facial Attribute Estimation'. Together they form a unique fingerprint.

Cite this