Crosslingual Induction of Semantic Roles

Ivan Titov, Alexandre Klementiev

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract / Description of output

We argue that multilingual parallel data provides a valuable source of indirect supervision for induction of shallow semantic representations. Specifically, we consider unsupervised induction of semantic roles from sentences annotated with automatically-predicted syntactic dependency representations and use a stateof-the-art generative Bayesian non-parametric model. At inference time, instead of only seeking the model which explains the monolingual data available for each language, we regularize the objective by introducing a soft constraint penalizing for disagreement in argument labeling on aligned sentences. We propose a simple approximate learning algorithm for our set-up which results in efficient inference. When applied to German-English parallel data, our method obtains a substantial improvement over a model trained without using the agreement signal, when both are tested on non-parallel sentences.
Original languageEnglish
Title of host publicationThe 50th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea - Volume 1: Long Papers
PublisherAssociation for Computational Linguistics
Number of pages10
ISBN (Print)978-1-937284-24-4
Publication statusPublished - Jul 2012


Dive into the research topics of 'Crosslingual Induction of Semantic Roles'. Together they form a unique fingerprint.

Cite this