TY - JOUR
T1 - Data-driven models to predict the elimination of sleeping sickness in former Equateur province of DRC
AU - Rock, K. S.
AU - Pandey, A.
AU - Ndeffo-Mbah, M. L.
AU - Atkins, K. E.
AU - Lumbala, C.
AU - Galvani, A.
AU - Keeling, M. J.
N1 - Funding Information:
The authors gratefully acknowledge funding of the NTD Modelling Consortium by the Bill and Melinda Gates Foundation in partnership with the Task Force for Global Health. The views, opinions, assumptions or any other information set out in this article are solely those of the authors.
Publisher Copyright:
© 2017 The Authors
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Approaching disease elimination, it is crucial to be able to assess progress towards key objectives using quantitative tools. For Gambian human African trypanosomiasis (HAT), the ultimate goal is to stop transmission by 2030, while intermediary targets include elimination as a public health problem − defined as <1 new case per 10,000 inhabitants in 90% of foci, and <2000 reported cases by 2020. Using two independent mathematical models, this study assessed the achievability of these goals in the former Equateur province of the Democratic Republic of Congo, which historically had endemic levels of disease. The two deterministic models used different assumptions on disease progression, risk of infection and non-participation in screening, reflecting biological uncertainty. To validate the models a censor-fit-uncensor procedure was used to fit to health-zone level data from 2000 to 2012; initially the last six years were censored, then three and the final step utilised all data. The different model projections were used to evaluate the expected transmission and reporting for each health zone within each province under six intervention strategies using currently available tools. In 2012 there were 197 reported HAT cases in former Equateur reduced from 6828 in 2000, however this reflects lower active testing for HAT (1.3% of the population compared to 7.2%). Modelling results indicate that there are likely to be <300 reported cases in former Equateur in 2020 if screening continues at the mean level for 2000–2012 (6.2%), and <120 cases if vector control is introduced. Some health zones may fail to achieve <1 new case per 10,000 by 2020 without vector control, although most appear on track for this target using medical interventions alone. The full elimination goal will be harder to reach; between 39 and 54% of health zones analysed may have to improve their current medical-only strategy to stop transmission completely by 2030.
AB - Approaching disease elimination, it is crucial to be able to assess progress towards key objectives using quantitative tools. For Gambian human African trypanosomiasis (HAT), the ultimate goal is to stop transmission by 2030, while intermediary targets include elimination as a public health problem − defined as <1 new case per 10,000 inhabitants in 90% of foci, and <2000 reported cases by 2020. Using two independent mathematical models, this study assessed the achievability of these goals in the former Equateur province of the Democratic Republic of Congo, which historically had endemic levels of disease. The two deterministic models used different assumptions on disease progression, risk of infection and non-participation in screening, reflecting biological uncertainty. To validate the models a censor-fit-uncensor procedure was used to fit to health-zone level data from 2000 to 2012; initially the last six years were censored, then three and the final step utilised all data. The different model projections were used to evaluate the expected transmission and reporting for each health zone within each province under six intervention strategies using currently available tools. In 2012 there were 197 reported HAT cases in former Equateur reduced from 6828 in 2000, however this reflects lower active testing for HAT (1.3% of the population compared to 7.2%). Modelling results indicate that there are likely to be <300 reported cases in former Equateur in 2020 if screening continues at the mean level for 2000–2012 (6.2%), and <120 cases if vector control is introduced. Some health zones may fail to achieve <1 new case per 10,000 by 2020 without vector control, although most appear on track for this target using medical interventions alone. The full elimination goal will be harder to reach; between 39 and 54% of health zones analysed may have to improve their current medical-only strategy to stop transmission completely by 2030.
KW - Elimination goals
KW - Gambian human African trypanosomiasis (sleeping sickness)
KW - Mathematical model
KW - Model comparison
KW - Neglected tropical diseases
UR - http://www.scopus.com/inward/record.url?scp=85014576270&partnerID=8YFLogxK
U2 - 10.1016/j.epidem.2017.01.006
DO - 10.1016/j.epidem.2017.01.006
M3 - Article
C2 - 28279451
AN - SCOPUS:85014576270
VL - 18
SP - 101
EP - 112
JO - Epidemics
JF - Epidemics
SN - 1755-4365
ER -