Abstract
Extensive cross-reactivity in T cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes seems to be essential to give sufficient immune surveillance against invading pathogens. This carries with it an inherent risk that T cells activated during a response to clear an infection can, perhaps years later, respond to a self pMHC of sufficient similarity. This lies at the heart of the molecular mimicry theory. Here we discuss our studies on the disease-causing potential of altered peptide ligands (APL) based on the sequence of a single autoantigenic epitope, the Ac1-9 peptide of myelin basic protein that induces experimental autoimmune encephalomyelitis in mice. These show that the window of similarity to self for induction of disease by cross-reactive non-self peptides is actually quite restricted. We show that each of the three pillars of immune tolerance (death, anergy/adaptation and regulation) has a role in limiting the risk of molecular mimicry by maintaining a threshold for harm.
Original language | English |
---|---|
Pages (from-to) | 262-71 |
Number of pages | 10 |
Journal | Journal of autoimmunity |
Volume | 29 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2007 |