TY - JOUR
T1 - Decomposition of mangrove roots: Effects of location, nutrients, species identity and mix in a Kenyan forest
AU - Huxham, Mark
AU - Langat, Joseph
AU - Tamooh, Fredrick
AU - Kennedy, Hilary
AU - Mencuccini, Maurizio
AU - Skov, Martin W.
AU - Kairo, James
PY - 2010/6/10
Y1 - 2010/6/10
N2 - Mangrove trees may allocate >50% of their biomass to roots. Dead roots often form peat, which can make mangroves significant carbon sinks and allow them to raise the soil surface and thus survive rising sea levels. Understanding mangrove root production and decomposition is hence of theoretical and applied importance. The current work explored the effects of species, site, and root size and root nutrients on decomposition. Decomposition of fine (<= 3 mm diameter) and coarse (>3 mm diameter, up to a maximum of similar to 9 mm) roots from three mangrove species, Avicennia marina, Bruguiera gymnorrhiza and Ceriops tagal was measured over 12 months at 6 sites along a tidal gradient in Gazi Bay, Kenya. C:N and P: N ratios in fresh and decomposed roots were measured, and the effects on decomposition of root size and age, of mixing roots from A. marina and C. tagal, of enriching B. gymnorrhiza roots with N and P and of artefacts caused by bagging roots were recorded. There were significant differences between species, with 76, 47 and 44 % mean dry weight lost after one year for A. marina, B. gymnorrhiza and C. tagal respectively, and between sites, with generally slower decomposition at dryer, high tidal areas. N enriched B. gymnorrhiza roots decomposed significantly faster than un-enriched controls; there was no effect of P enrichment. Mixing A. marina and C. tagal roots caused significantly enhanced decomposition in C togal. These results suggest that N availability was an important determinant of decomposition, since differences between species reflected the initial C: N ratios. The relatively slow decomposition rates recorded concur with other studies, and may overestimate natural rates, since larger (10-20 mm diameter), more mature and un-bagged roots all showed significantly slower rates. (C) 2010 Elsevier Ltd. All rights reserved.
AB - Mangrove trees may allocate >50% of their biomass to roots. Dead roots often form peat, which can make mangroves significant carbon sinks and allow them to raise the soil surface and thus survive rising sea levels. Understanding mangrove root production and decomposition is hence of theoretical and applied importance. The current work explored the effects of species, site, and root size and root nutrients on decomposition. Decomposition of fine (<= 3 mm diameter) and coarse (>3 mm diameter, up to a maximum of similar to 9 mm) roots from three mangrove species, Avicennia marina, Bruguiera gymnorrhiza and Ceriops tagal was measured over 12 months at 6 sites along a tidal gradient in Gazi Bay, Kenya. C:N and P: N ratios in fresh and decomposed roots were measured, and the effects on decomposition of root size and age, of mixing roots from A. marina and C. tagal, of enriching B. gymnorrhiza roots with N and P and of artefacts caused by bagging roots were recorded. There were significant differences between species, with 76, 47 and 44 % mean dry weight lost after one year for A. marina, B. gymnorrhiza and C. tagal respectively, and between sites, with generally slower decomposition at dryer, high tidal areas. N enriched B. gymnorrhiza roots decomposed significantly faster than un-enriched controls; there was no effect of P enrichment. Mixing A. marina and C. tagal roots caused significantly enhanced decomposition in C togal. These results suggest that N availability was an important determinant of decomposition, since differences between species reflected the initial C: N ratios. The relatively slow decomposition rates recorded concur with other studies, and may overestimate natural rates, since larger (10-20 mm diameter), more mature and un-bagged roots all showed significantly slower rates. (C) 2010 Elsevier Ltd. All rights reserved.
KW - mangrove
KW - roots
KW - carbon
KW - decay
KW - nitrogen
KW - species-mixing
KW - GAZI BAY
KW - LITTER
KW - BIOMASS
KW - DEGRADATION
KW - DYNAMICS
KW - ESTUARY
KW - LEAF
KW - MASS
UR - http://www.scopus.com/inward/record.url?scp=77953362420&partnerID=8YFLogxK
U2 - 10.1016/j.ecss.2010.03.021
DO - 10.1016/j.ecss.2010.03.021
M3 - Article
VL - 88
SP - 135
EP - 142
JO - Estuarine, Coastal and Shelf Science
JF - Estuarine, Coastal and Shelf Science
SN - 0272-7714
IS - 1
ER -