DEM modelling of cone penetration and unconfined compression in cohesive solids

Alvaro Janda, Jin Ooi

Research output: Contribution to journalArticlepeer-review


We present a numerical study on the DEM modelling of cohesive solids using a Visco-Elasto-Plastic Frictional Adhesive contact model [1]. The capabilities of the contact model to capture the mechanical macroscopic behaviour of cohesive materials were investigated by means of cone penetration and unconfined compression simulations. The results show that the simulations are able to reproduce qualitatively the typical trend of the penetration resistance profile in cohesive solid characterized by a steady-state at large penetration depths. The contact model is also capable of capturing the dependence of the penetration resistance on the consolidation stress history. Furthermore, the simulations reproduce the relationship between the unconfined strength and the penetration resistance that has been reported in real cohesive materials. Finally, we investigated the scaling laws of the contact model parameters to produce the same load-deformation behaviour invariant of the particle size used in the simulations. The results demonstrate the suitability of the proposed model to simulate complex processes involving cohesive solid at large engineering scale scenarios.
Original languageEnglish
JournalPowder Technology
Early online date30 May 2015
Publication statusPublished - 2015


Dive into the research topics of 'DEM modelling of cone penetration and unconfined compression in cohesive solids'. Together they form a unique fingerprint.

Cite this