Demographically explicit scans for barriers to gene flow using gIMble

Dominik R. Laetsch, Gertjan Bisschop, Simon H. Martin, Simon Aeschbacher, Derek Setter, Konrad Lohse*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Identifying regions of the genome that act as barriers to gene flow between recently diverged taxa has remained challenging given the many evolutionary forces that generate variation in genetic diversity and divergence along the genome, and the stochastic nature of this variation. Progress has been impeded by a conceptual and methodological divide between analyses that infer the demographic history of speciation and genome scans aimed at identifying locally maladaptive alleles i.e. genomic barriers to gene flow. Here we implement genomewide IM blockwise likelihood estimation (gIMble), a composite likelihood approach for the quantification of barriers, that bridges this divide. This analytic framework captures background selection and selection against barriers in a model of isolation with migration (IM) as heterogeneity in effective population size (Ne) and effective migration rate (me), respectively. Variation in both effective demographic parameters is estimated in sliding windows via pre-computed likelihood grids. gIMble includes modules for pre-processing/filtering of genomic data and performing parametric bootstraps using coalescent simulations. To demonstrate the new approach, we analyse data from a well-studied pair of sister species of tropical butterflies with a known history of post-divergence gene flow: Heliconius melpomene and H. cydno. Our analyses uncover both large-effect barrier loci (including well-known wing-pattern genes) and a genome-wide signal of a polygenic barrier architecture.
Original languageEnglish
Article numbere1010999
Number of pages30
JournalPLoS Genetics
Issue number10
Publication statusPublished - 10 Oct 2023


Dive into the research topics of 'Demographically explicit scans for barriers to gene flow using gIMble'. Together they form a unique fingerprint.

Cite this