Dense Nuclear Matter Equation of State from Heavy-Ion Collisions

Agnieszka Sorensen*, Kshitij Agarwal, Kyle W. Brown, Zbigniew Chajecki, Paweł Danielewicz, Christian Drischler, Stefano Gandolfi, Jeremy W. Holt, Matthias Kaminski, Che-Ming Ko, Rohit Kumar, Bao-An Li, William G. Lynch, Alan B. McIntosh, William G. Newton, Scott Pratt, Oleh Savchuk, Maria Stefaniak, Ingo Tews, ManYee Betty TsangRamona Vogt, Hermann Wolter, Hanna Zbroszczyk, Navid Abbasi, Jörg Aichelin, Anton Andronic, Steffen A. Bass, Francesco Becattini, David Blaschke, Marcus Bleicher, Christoph Blume, Elena Bratkovskaya, B. Alex Brown, David A. Brown, Alberto Camaiani, Giovanni Casini, Katerina Chatziioannou, Abdelouahad Chbihi, Maria Colonna, Mircea Dan Cozma, Veronica Dexheimer, Xin Dong, Travis Dore, Lipei Du, José A. Dueñas, Hannah Elfner, Wojciech Florkowski, Yuki Fujimoto, Richard J. Furnstahl, Alexandra Gade, Tetyana Galatyuk, Charles Gale, Frank Geurts, Sašo Grozdanov, Kris Hagel, Steven P. Harris, Wick Haxton, Ulrich Heinz, Michal P. Heller, Or Hen, Heiko Hergert, Norbert Herrmann, Huan Zhong Huang, Xu-Guang Huang, Natsumi Ikeno, Gabriele Inghirami, Jakub Jankowski, Jiangyong Jia, José C. Jiménez, Joseph Kapusta, Behruz Kardan, Iurii Karpenko, Declan Keane, Dmitri Kharzeev, Andrej Kugler, Arnaud Le Fèvre, Dean Lee, Hong Liu, Michael A. Lisa, William J. Llope, Ivano Lombardo, Manuel Lorenz, Tommaso Marchi, Larry McLerran, Ulrich Mosel, Anton Motornenko, Berndt Müller, Paolo Napolitani, Joseph B. Natowitz, Witold Nazarewicz, Jorge Noronha, Jacquelyn Noronha-Hostler, Grażyna Odyniec, Panagiota Papakonstantinou, Zuzana Paulínyová, Jorge Piekarewicz, Robert D. Pisarski, Christopher Plumberg, Madappa Prakash, Jørgen Randrup, Claudia Ratti, Peter Rau, Sanjay Reddy, Hans-Rudolf Schmidt, Paolo Russotto, Radoslaw Ryblewski, Andreas Schäfer, Björn Schenke, Srimoyee Sen, Peter Senger, Richard Seto, Chun Shen, Bradley Sherrill, Mayank Singh, Vladimir Skokov, Michał Spaliński, Jan Steinheimer, Mikhail Stephanov, Joachim Stroth, Christian Sturm, Kai-Jia Sun, Aihong Tang, Giorgio Torrieri, Wolfgang Trautmann, Giuseppe Verde, Volodymyr Vovchenko, Ryoichi Wada, Fuqiang Wang, Gang Wang, Klaus Werner, Nu Xu, Zhangbu Xu, Ho-Ung Yee, Sherry Yennello, Yi Yin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

The nuclear equation of state (EOS) is at the center of numerous theoretical and experimental efforts in nuclear physics. With advances in microscopic theories for nuclear interactions, the availability of experiments probing nuclear matter under conditions not reached before, endeavors to develop sophisticated and reliable transport simulations to interpret these experiments, and the advent of multi-messenger astronomy, the next decade will bring new opportunities for determining the nuclear matter EOS, elucidating its dependence on density, temperature, and isospin asymmetry. Among controlled terrestrial experiments, collisions of heavy nuclei at intermediate beam energies (from a few tens of MeV/nucleon to about 25 GeV/nucleon in the fixed-target frame) probe the widest ranges of baryon density and temperature, enabling studies of nuclear matter from a few tenths to about 5 times the nuclear saturation density and for temperatures from a few to well above a hundred MeV, respectively. Collisions of neutron-rich isotopes further bring the opportunity to probe effects due to the isospin asymmetry. However, capitalizing on the enormous scientific effort aimed at uncovering the dense nuclear matter EOS, both at RHIC and at FRIB as well as at other international facilities, depends on the continued development of state-of-the-art hadronic transport simulations. This white paper highlights the essential role that heavy-ion collision experiments and hadronic transport simulations play in understanding strong interactions in dense nuclear matter, with an emphasis on how these efforts can be used together with microscopic approaches and neutron star studies to uncover the nuclear EOS.
Original languageEnglish
Article number104080
Pages (from-to)1-62
Number of pages62
JournalProgress in Particle and Nuclear Physics
Early online date19 Sept 2023
Publication statusPublished - 30 Nov 2023

Keywords / Materials (for Non-textual outputs)

  • Heavy-ion collisions
  • Hadronic transport
  • Nuclear matter
  • Equatio of state
  • Symmetry energy


Dive into the research topics of 'Dense Nuclear Matter Equation of State from Heavy-Ion Collisions'. Together they form a unique fingerprint.

Cite this