Design and optimization of plasma jet nozzles based on computational fluid dynamics

Nan Yu, Yanni Yang, Renaud Jourdain, Mustapha Gourma, Adam Bennett, Fengzhou Fang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This study aims at identifying an optimal solution for the design of convergent-divergent nozzles discharging high-temperature plasma jets. Optimized profile parameters (e.g. throat size, depths of convergent and divergent parts) were developed to enhance the processing capability of the inductively coupled plasma torch. The temperature and velocity of the plasma jet are studied both along the axis of the nozzle and onto the impinged substrate surface. Computational fluid dynamics analysis of 55 models with different cross-sectional profiles highlights cases that can be used to enhance plasma figuring processes. The enhanced nozzles are compared with the benchmark nozzle in all selection criteria. This optimization approach is proven to provide an efficient design method of plasma nozzles for future processing activities. The rapid design and optimization of the nozzle are expected to adjust the material removal footprint of plasma process in metre-scale optical fabrication. Experimental results prove that the enhanced nozzle has 5% higher efficiency against the original one.

Original languageEnglish
Pages (from-to)2559-2568
Number of pages10
JournalInternational Journal of Advanced Manufacturing Technology
Volume108
Issue number7-8
DOIs
Publication statusPublished - 11 Jun 2020

Keywords

  • Computational fluid dynamics
  • Convergent-divergent nozzle
  • Optimization
  • Plasma processing

Fingerprint Dive into the research topics of 'Design and optimization of plasma jet nozzles based on computational fluid dynamics'. Together they form a unique fingerprint.

Cite this