Design, fabrication and application of GaN-based micro-LED arrays with individual addressing by N-electrodes

Enyuan Xie, Mark Stonehouse, Ricardo Ferreira, Jonathan J D McKendry, Johannes Herrnsdorf, Xiangyu He, Sujan Rajbhandari, Hyunchae Chun, Aravind V N Jalajakumari, Oscar Almer, Grahame Faulkner, Ian M. Watson, Erdan Gu, Robert Henderson, Dominic O'Brien, Martin D. Dawson

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We demonstrate the development, performance and application of a novel GaN-based micro-light emitting diode (μLED) array sharing a common p-electrode (anode), and with individually addressable n-electrodes (cathodes). Compared to conventional GaN-based LED arrays, this array design employs a reversed structure of common and individual electrodes, which makes it compatible with n-type metal-oxide-semiconductor (NMOS) transistor-based drivers for faster modulation. Excellent performance characteristics are illustrated by an example array emitting at 450 nm. At a current density of 17.7 kA/cm2 in direct-current operation, the optical power and small signal electrical-to-optical modulation bandwidth of a single μLED element with 24 μm diameter are over 2.0 mW and 440 MHz, respectively. The optimized fabrication process also ensures a high yield of working μLED elements per array, and excellent element-to-element uniformity of electrical/optical characteristics. Results on visible light communication are presented as an application of an array integrated with an NMOS driver. Data transmission at several hundred Mbps without bit error is achieved for single- and multiple-μLED-element operations, under an on-off-keying modulation scheme. Transmission of stepped sawtooth waveforms is also demonstrated to confirm that the μLED elements can transmit discrete multi-level signals.
Original languageEnglish
Number of pages12
JournalIeee photonics journal
Issue number6
Publication statusPublished - 1 Dec 2017


Dive into the research topics of 'Design, fabrication and application of GaN-based micro-LED arrays with individual addressing by N-electrodes'. Together they form a unique fingerprint.

Cite this