Detecting eccentric supermassive black hole binaries with pulsar timing arrays: Resolvable source strategies

S. R. Taylor, E. A. Huerta, J. R. Gair, S. T. McWilliams

Research output: Contribution to journalArticlepeer-review

Abstract

The couplings between supermassive black-hole binaries and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system's gravitational-wave signal enters the pulsar-timing array band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric supermassive black-hole binary system with pulsar-timing arrays. Additionally, we generalize the pulsar-timing array $\mathcal{F}_e$-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single gravitational-wave sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.
Original languageEnglish
Article number70
JournalAstrophysical Journal
Volume817
Issue number1
DOIs
Publication statusPublished - 22 Jan 2016

Keywords

  • gr-qc
  • astro-ph.HE

Fingerprint

Dive into the research topics of 'Detecting eccentric supermassive black hole binaries with pulsar timing arrays: Resolvable source strategies'. Together they form a unique fingerprint.

Cite this