Development and validation of multivariable prediction models of remission, recovery, and quality of life outcomes in people with first episode psychosis: A machine learning approach

Samuel P Leighton, Rachel Upthegrove, Rajeev Krishnadas, Michael E Benros, Matthew R Broome, Georgios V Gkoutos, Peter F Liddle, Swaran P Singh, Linda Everard, Peter B Jones, David Fowler, Vimal Sharma, Nicholas Freemantle, Rune H B Christensen, Nikolai Albert, Merete Nordentoft, Matthias Schwannauer, Jonathan Cavanagh, Andrew I Gumley, Max BirchwoodPavan K Mallikarjun

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

BackgroundOutcomes for people with first-episode psychosis are highly heterogeneous. Few reliable validated methods are available to predict the outcome for individual patients in the first clinical contact. In this study, we aimed to build multivariable prediction models of 1-year remission and recovery outcomes using baseline clinical variables in people with first-episode psychosis.
MethodsIn this machine learning approach, we applied supervised machine learning, using regularised regression and nested leave-one-site-out cross-validation, to baseline clinical data from the English Evaluating the Development and Impact of Early Intervention Services (EDEN) study (n=1027), to develop and internally validate prediction models at 1-year follow-up. We assessed four binary outcomes that were recorded at 1 year: symptom remission, social recovery, vocational recovery, and quality of life (QoL). We externally validated the prediction models by selecting from the top predictor variables identified in the internal validation models the variables shared with the external validation datasets comprised of two Scottish longitudinal cohort studies (n=162) and the OPUS trial, a randomised controlled trial of specialised assertive intervention versus standard treatment (n=578).
FindingsThe performance of prediction models was robust for the four 1-year outcomes of symptom remission (area under the receiver operating characteristic curve [AUC] 0·703, 95% CI 0·664–0·742), social recovery (0·731, 0·697–0·765), vocational recovery (0·736, 0·702–0·771), and QoL (0·704, 0·667–0·742; p<0·0001 for all outcomes), on internal validation. We externally validated the outcomes of symptom remission (AUC 0·680, 95% CI 0·587–0·773), vocational recovery (0·867, 0·805–0·930), and QoL (0·679, 0·522–0·836) in the Scottish datasets, and symptom remission (0·616, 0·553–0·679), social recovery (0·573, 0·504–0·643), vocational recovery (0·660, 0·610–0·710), and QoL (0·556, 0·481–0·631) in the OPUS dataset.
InterpretationIn our machine learning analysis, we showed that prediction models can reliably and prospectively identify poor remission and recovery outcomes at 1 year for patients with first-episode psychosis using baseline clinical variables at first clinical contact.
FundingLundbeck Foundation.
Original languageEnglish
Pages (from-to)e261-e270
Number of pages10
JournalThe Lancet Digital Health
Volume1
Issue number6
Early online date12 Sept 2019
DOIs
Publication statusPublished - 1 Oct 2019

Fingerprint

Dive into the research topics of 'Development and validation of multivariable prediction models of remission, recovery, and quality of life outcomes in people with first episode psychosis: A machine learning approach'. Together they form a unique fingerprint.

Cite this