Projects per year
Abstract / Description of output
We have developed cross-genotype and genotype-specific quantitative reverse-transcription PCR (qRT-PCR) assays to detect and quantify the number of parasites, transmission stages (gametocytes) and male gametocytes in blood stage Plasmodium chabaudi infections. Our cross-genotype assays are reliable, repeatable and generate counts that correlate strongly (R(2)s > 90%) with counts expected from blood smears. Our genotype-specific assays can distinguish and quantify different stages of genetically distinct parasite clones (genotypes) in mixed infections and are as sensitive as our cross-genotype assays. Using these assays we show that gametocyte density and gametocyte sex ratios vary during infections for two genetically distinct parasite lines (genotypes) and present the first data to reveal how sex ratio is affected when each genotype experiences competition in mixed-genotype infections. Successful infection of mosquito vectors depends on both gametocyte density and their sex ratio and we discuss the implications of competition in genetically diverse infections for transmission success. (c) 2007 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 199-209 |
Number of pages | 11 |
Journal | Molecular and Biochemical Parasitology |
Volume | 156 |
Issue number | 2 |
DOIs | |
Publication status | Published - Dec 2007 |
Keywords / Materials (for Non-textual outputs)
- Plasmodium chabaudi
- gametocyte
- sex ratio
- qRT-PCR
- MALARIA PARASITE POPULATIONS
- WITHIN-HOST COMPETITION
- TOXOPLASMA-GONDII
- BLOOD PARASITES
- PREMATURE REJECTION
- FERTILITY INSURANCE
- TRANSMISSION
- FALCIPARUM
- VIRULENCE
- QUANTIFICATION
Fingerprint
Dive into the research topics of 'Development of reverse-transcription PCR techniques to analyse the density and sex ratio of gametocytes in genetically diverse Plasmodium chabaudi infections'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Evolution of mating tactics and reproductive strategies in protozoan parasites
1/10/06 → 31/12/07
Project: Research