Abstract / Description of output
We previously found that myocardial ischemia/reperfusion (I/R) initiates expression of tumor necrosis factor-alpha (TNF) leading to coronary endothelial dysfunction. However, it is not clear whether there is a direct relationship between levels of TNF expression and endothelial dysfunction in reperfusion injury. We studied levels of TNF expression by using different transgenic animals expressing varying amounts of TNF in I/R. We crossed TNF overexpression (TNF(++/++)) with TNF knockout (TNF(-/-)) mice; thus we have a heterozygote population of mice with the expression of TNF "in between" the TNF(-/-) and TNF(++/++) mice. Mouse hearts were subjected to 30 min of global ischemia followed by 90 min of reperfusion and their vasoactivity before and after I/R was examined in wild type (WT), TNF(-/-), TNF(++/++) and TNF heterozygote (TNF(-/++), cross between TNF(-/-) and TNF(++/++)) mice. In heterozygote TNF(-/++) mice with intermediate cardiac-specific expression of TNF, acetylcholine-induced or flow-induced endothelial-dependent vasodilation following I/R was between TNF(++/++) and TNF(-/-) following I/R. Neutralizing antibodies to TNF administered immediately before the onset of reperfusion-preserved endothelial-dependent dilation following I/R in WT, TNF(-/++) and TNF(++/++) mice. In WT, TNF(-/++) and TNF(++/++) mice, I/R-induced endothelial dysfunction was progressively lessened by administration of free-radical scavenger TEMPOL immediately before initiating reperfusion. During I/R, production of superoxide (O(2) (center dot-)) was greatest in TNF(++/++) mice as compared to WT, TNF(-/++) and TNF(-/-) mice. Following I/R, arginase mRNA expression was elevated in the WT, substantially elevated in the TNF(-/++) and TNF(++/++) mice and not affected in the TNF(-/-) mice. These results suggest that the level of TNF expression determines arginase expression in endothelial cells during myocardial I/R, which is one of the mechanisms by which TNF compromises coronary endothelial function in reperfusion injury.
Original language | English |
---|---|
Pages (from-to) | 453-464 |
Number of pages | 12 |
Journal | Basic research in cardiology |
Volume | 105 |
Issue number | 4 |
DOIs | |
Publication status | Published - Jul 2010 |
Keywords / Materials (for Non-textual outputs)
- Coronary artery disease
- Ischemia
- NO
- Microcirculation
- Vasodilation
- TUMOR-NECROSIS-FACTOR
- OXIDE-MEDIATED DILATION
- NITRIC-OXIDE
- ISCHEMIA/REPERFUSION INJURY
- CORONARY MICROEMBOLIZATION
- ISCHEMIA-REPERFUSION
- MYOCARDIAL-ISCHEMIA
- XANTHINE-OXIDASE
- HEART-FAILURE
- DIABETIC MICE