Directly irradiated liquid metal film in an ultra-high temperature solar cavity receiver. Part 1: Concepts and a quasi-steady-state analysis

Tarek Abdelsalam, Zhao Tian, Adam Robinson

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Solar thermal energy has the theoretical potential to deliver heat at ultra-high temperatures (>1300 K), which can enable integration with state-of-the-art thermal energy storage systems and unlock new applications, including advanced power cycles and thermal processes. Liquid metals are prospective heat transfer fluids for such systems, given their favourable thermo-physical properties, while their aggressive corrosiveness is shown to be mitigated using compatible refractory containment materials. The conventional approach of collecting concentrated solar energy typically involves intermediate solid absorbers, in form of tubes or porous structures, which are prone to thermomechanical and chemical failure under high solar radiation. This paper investigates the use of directly irradiated liquid metal (tin) film, operating between 800-1673 K, in two possible cavity configurations: A ‘reflective cavity’ and an ‘absorptive cavity’. The former employs cavity walls as internal reflectors to entrap radiation by secondary reflections until directly absorbed by the liquid metal. In the latter, the directly irradiated film is used to moderate the initial shot of concentrated solar radiation before diffusively reflecting them to the absorptive cavity walls, which perform as a radiative heat exchanger used to preheat the liquid metal. The concept performance is evaluated using an approximate quasi-steady-state energy model of the receiver. The reflective cavity performance is found strongly dependent on the optical properties of its internal surfaces, which resulted in poor efficiencies (70%) with greater insensitivity to the optical properties, hence, promoting its consideration in future developments of this concept.
Original languageEnglish
Pages (from-to)355-368
JournalSolar Energy
Volume255
Early online date1 Apr 2023
DOIs
Publication statusPublished - 1 May 2023

Keywords / Materials (for Non-textual outputs)

  • Analytical model
  • solar thermal
  • High temperature
  • Liquid metal
  • receiver
  • Efficiency

Fingerprint

Dive into the research topics of 'Directly irradiated liquid metal film in an ultra-high temperature solar cavity receiver. Part 1: Concepts and a quasi-steady-state analysis'. Together they form a unique fingerprint.

Cite this