Discharge patterning in rat olfactory bulb mitral cells in vivo

Gareth Leng, Hirofumi Hashimoto, Chiharu Tsuji, Nancy Sabatier, Mike Ludwig

Research output: Contribution to journalArticlepeer-review

Abstract

Here we present a detailed statistical analysis of the discharge characteristics of mitral cells of the main olfactory bulb of urethane-anesthetized rats. Neurons were recorded from the mitral cell layer, and antidromically identified by stimuli applied to the lateral olfactory tract. All mitral cells displayed repeated, prolonged bursts of action potentials typically lasting >100 sec and separated by similarly long intervals; about half were completely silent between bursts. No such bursting was observed in nonmitral cells recorded in close proximity to mitral cells. Bursts were asynchronous among even adjacent mitral cells. The intraburst activity of most mitral cells showed strong entrainment to the spontaneous respiratory rhythm; similar entrainment was seen in some, but not all nonmitral cells. All mitral cells displayed a peak of excitability at ~25 msec after spikes, as reflected by a peak in the interspike interval distribution and in the corresponding hazard function. About half also showed a peak at about 6 msec, reflecting the common occurrence of doublet spikes. Nonmitral cells showed no such doublet spikes. Bursts typically increased in intensity over the first 20-30 sec of a burst, during which time doublets were rare or absent. After 20-30 sec (in cells that exhibited doublets), doublets occurred frequently for as long as the burst persisted, in trains of up to 10 doublets. The last doublet was followed by an extended relative refractory period the duration of which was independent of train length. In cells that were excited by application of a particular odor, responsiveness was apparently greater during silent periods between bursts than during bursts. Conversely in cells that were inhibited by a particular odor, responsiveness was only apparent when cells were active. Extensive raw (event timing) data from the cells, together with details of those analyses, are provided as supplementary material, freely available for secondary use by others.

Original languageEnglish
Article numbere12021
JournalPhysiological reports
Volume2
Issue number10
Early online date3 Oct 2014
DOIs
Publication statusPublished - Oct 2014

Fingerprint

Dive into the research topics of 'Discharge patterning in rat olfactory bulb mitral cells in vivo'. Together they form a unique fingerprint.

Cite this